477 research outputs found

    Jointly learning trajectory generation and hitting point prediction in robot table tennis

    Get PDF
    This paper proposes a combined learning framework for a table tennis robot. In a typical robot table tennis setup, a single striking point is predicted for the robot on the basis of the ball's initial state. Subsequently, the desired Cartesian racket state and the desired joint states at the striking time are determined. Finally, robot joint trajectories are generated. Instead of predicting a single striking point, we propose to construct a ball trajectory prediction map, which predicts the ball's entire rebound trajectory using the ball's initial state. We construct as well a robot trajectory generation map, which predicts the robot joint movement pattern and the movement duration using the Cartesian racket trajectories without the need of inverse kinematics, where a correlation function is used to adapt these joint movement parameters according to the ball flight trajectory. With joint movement parameters, we can directly generate joint trajectories. Additionally, we introduce a reinforcement learning approach to modify robot joint trajectories such that the robot can return balls well. We validate this new framework in both the simulated and the real robotic systems and illustrate that a seven degree-of-freedom Barrett WAM robot performs well

    Finite temperature quantum simulation of stabilizer Hamiltonians

    Full text link
    We present a scheme for robust finite temperature quantum simulation of stabilizer Hamiltonians. The scheme is designed for realization in a physical system consisting of a finite set of neutral atoms trapped in an addressable optical lattice that are controllable via 1- and 2-body operations together with dissipative 1-body operations such as optical pumping. We show that these minimal physical constraints suffice for design of a quantum simulation scheme for any stabilizer Hamiltonian at either finite or zero temperature. We demonstrate the approach with application to the abelian and non-abelian toric codes.Comment: 13 pages, 2 figure

    A general T-matrix approach applied to two-body and three-body problems in cold atomic gases

    Full text link
    We propose a systematic T-matrix approach to solve few-body problems with s-wave contact interactions in ultracold atomic gases. The problem is generally reduced to a matrix equation expanded by a set of orthogonal molecular states, describing external center-of-mass motions of pairs of interacting particles; while each matrix element is guaranteed to be finite by a proper renormalization for internal relative motions. This approach is able to incorporate various scattering problems and the calculations of related physical quantities in a single framework, and also provides a physically transparent way to understand the mechanism of resonance scattering. For applications, we study two-body effective scattering in 2D-3D mixed dimensions, where the resonance position and width are determined with high precision from only a few number of matrix elements. We also study three fermions in a (rotating) harmonic trap, where exotic scattering properties in terms of mass ratios and angular momenta are uniquely identified in the framework of T-matrix.Comment: 14 pages, 4 figure

    Insulator-Superfluid transition of spin-1 bosons in an optical lattice in magnetic field

    Full text link
    We study the insulator-superfluid transition of spin-1 bosons in an optical lattice in a uniform magnetic field. Based on a mean-field approximation we obtained a zero-temperature phase diagram. We found that depending on the particle number the transition for bosons with antiferromagnetic interaction may occur into different superfluid phases with spins aligned along or opposite to the field direction. This is qualitatively different from the field-free transition for which the mean-field theory predicts a unique (polar) superfluid state for any particle number.Comment: 10 pages, 2 eps figure

    Density Waves in Layered Systems with Fermionic Polar Molecules

    Full text link
    A layered system of two-dimensional planes containing fermionic polar molecules can potentially realize a number of exotic quantum many-body states. Among the predictions, are density-wave instabilities driven by the anisotropic part of the dipole-dipole interaction in a single layer. However, in typical multilayer setups it is reasonable to expect that the onset and properties of a density-wave are modified by adjacent layers. Here we show that this is indeed the case. For multiple layers the critical strength for the density-wave instability decreases with the number of layers. The effect depends on density and is more pronounced in the low density regime. The lowest solution of the instability corresponds to the density waves in the different layers being in-phase, whereas higher solutions have one or several adjancet layers that are out of phase. The parameter regime needed to explore this instability is within reach of current experiments.Comment: 7 pages, 4 figures. Final version in EPJD, EuroQUAM special issue "Cold Quantum Matter - Achievements and Prospects

    Superfluidity versus Bloch oscillations in confined atomic gases

    Full text link
    We study the superfluid properties of (quasi) one-dimensional bosonic atom gases/liquids in traps with finite geometries in the presence of strong quantum fluctuations. Driving the condensate with a moving defect we find the nucleation rate for phase slips using instanton techniques. While phase slips are quenched in a ring resulting in a superfluid response, they proliferate in a tube geometry where we find Bloch oscillations in the chemical potential. These Bloch oscillations describe the individual tunneling of atoms through the defect and thus are a consequence of particle quantization.Comment: 4 pages, 1 figur

    Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle

    Full text link
    We present a detailed analysis of the 1D expansion of a coherent interacting matterwave (a Bose-Einstein condensate) in the presence of disorder. A 1D random potential is created via laser speckle patterns. It is carefully calibrated and the self-averaging properties of our experimental system are discussed. We observe the suppression of the transport of the BEC in the random potential. We discuss the scenario of disorder-induced trapping taking into account the radial extension in our experimental 3D BEC and we compare our experimental results with the theoretical predictions

    Theory of superfluidity and drag force in the one-dimensional Bose gas

    Full text link
    The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and quantitative predictions for the drag force experienced by moving obstacles have become available. This topical review discusses the drag force obtained from linear response theory in relation to Landau's criterion of superfluidity. Based upon improved analytical and numerical understanding of the dynamical structure factor, results for different obstacle potentials are obtained, including single impurities, optical lattices and random potentials generated from speckle patterns. The dynamical breakdown of superfluidity in random potentials is discussed in relation to Anderson localization and the predicted superfluid-insulator transition in these systems.Comment: 17 pages, 12 figures, mini-review prepared for the special issue of Frontiers of Physics "Recent Progresses on Quantum Dynamics of Ultracold Atoms and Future Quantum Technologies", edited by Profs. Lee, Ueda, and Drummon

    Thermodynamics of Dipolar Chain Systems

    Full text link
    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects of the intralayer repulsion and quantum statistical requirements in systems with more than one chain. Specifically, we consider the case of two chains and solve the problem analytically within the harmonic Hamiltonian approach which is accurate for large dipole moments. The case of three chains is calculated numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments.Comment: 15 pages, 5 figures, final versio
    corecore