7,166 research outputs found

    Radiative Penguin Decays of B Mesons: Measurements of B -> K* gamma, B -> K2*(1430) gamma, and Search for B0 -> phi gamma

    Full text link
    Electromagnetic radiative penguin decays of the B meson were studied with the BaBar detector at SLAC's PEP-II asymmetric-energy B Factory. Branching fractions and isospin asymmetry of the decay B -> K* gamma, branching fractions of B -> K2*(1430) gamma, and a search for B0 -> phi gamma are presented. The decay rates may be enhanced by contributions from non-standard model processes.Comment: 5 pages, 3 figures, presented at the 2004 Meeting of the Division of Particles and Fields of the American Physical Society, Riverside, CA, USA, August 26-31, 2004, submitted to International Journal of Modern Physics

    Physics at the B Factories

    Get PDF
    We review recent progress at the two e+e−e^+ e^- B factories. The first measurement of CP violation and the prospects for measuring all the angles of the unitarity triangle are discussed.Comment: To appear in the Proceedings of From the Smallest to the Largest Distances, a conference in honor of Tranh Thanh Van in Moscow, Russi

    Nonleptonic charmless two-body B→ATB \to AT decays

    Full text link
    In this work we have studied hadronic charmless two-body B decays involving p-wave mesons in final state. We have calculated branching ratios of B→ATB\to AT decays (where AA and TT denotes a 3P1^3P_1 axial-vector and a tensor meson, respectively), using B→TB \to T form factors obtained in the covariant light-front (CLF) approach, and the full effective Hamiltonian. We have obtained that B(B0→a1+a2−)=42.47×10−6\mathcal{B}(B^{0} \to a_{1}^{+}a_{2}^{-}) =42.47 \times10^{-6}, B(B+→a1+a20)=22.71×10−6\mathcal{B}(B^{+} \to a_{1}^{+}a_{2}^{0}) = 22.71 \times10^{-6}, B(B→f1K2∗)=(2.8−4)×10−6\mathcal{B}(B \to f_{1}K_{2}^{*}) = (2.8-4) \times 10^{-6} (with f1=,f1(1285),f1(1420)f_{1}=, f_{1}(1285),f_{1}(1420)) for θ3P1=53.2∘\theta_{^{3}P_{1}} = 53.2^{\circ}, B(B→f1(1420)K2∗)=(5.91−6.42)×10−6\mathcal{B}(B \to f_{1}(1420)K_{2}^{*}) = (5.91-6.42) \times 10^{-6} with θ3P1=27.9∘\theta_{^{3}P_{1}} = 27.9^{\circ}, B(B→K1a2)=(1.7−5.7)[1−9.3]×10−6\mathcal{B}(B \to K_{1}a_{2})= (1.7 - 5.7) [1-9.3] \times10^{-6} for θK1=−37∘[−58∘]\theta_{K_{1}} = -37^{\circ} [-58^{\circ}] where K1=K1(1270),K1(1400)K_1 = K_1(1270), K_1(1400). It seems that these decays can be measured in experiments at BB factories. Additionally, we have found that B(B→K1(1270)a2)/B(B→K1(1400)a2)\mathcal{B}(B \to K_{1}(1270)a_{2})/\mathcal{B}(B \to K_{1}(1400)a_{2}) and B(B→f1(1420)K2∗)/B(B→f1(1285)K2∗)\mathcal{B}(B \to f_1(1420)K_{2}^{*})/\mathcal{B}(B \to f_1(1285)K_{2}^{*}) ratios could be useful to determine numerical values of mixing angles θK1\theta_{K_{1}} and θ3P1\theta_{^{3}P_{1}}, respectively.Comment: 12 page

    Vast planes of satellites in a high resolution simulation of the Local Group: comparison to Andromeda

    Full text link
    We search for vast planes of satellites (VPoS) in a high resolution simulation of the Local Group performed by the CLUES project, which improves significantly the resolution of former similar studies. We use a simple method for detecting planar configurations of satellites, and validate it on the known plane of M31. We implement a range of prescriptions for modelling the satellite populations, roughly reproducing the variety of recipes used in the literature, and investigate the occurence and properties of planar structures in these populations. The structure of the simulated satellite systems is strongly non-random and contains planes of satellites, predominantly co-rotating, with, in some cases, sizes comparable to the plane observed in M31 by Ibata et al.. However the latter is slightly richer in satellites, slightly thinner and has stronger co-rotation, which makes it stand out as overall more exceptional than the simulated planes, when compared to a random population. Although the simulated planes we find are generally dominated by one real structure, forming its backbone, they are also partly fortuitous and are thus not kinematically coherent structures as a whole. Provided that the simulated and observed planes of satellites are indeed of the same nature, our results suggest that the VPoS of M31 is not a coherent disc and that one third to one half of its satellites must have large proper motions perpendicular to the plane

    What can we learn from phi_1 and B_d^0 -> pi^+ pi^- ?

    Full text link
    We discuss what we can understand from ϕ1\phi_1 and Bd0→π+π−B^0_d\to \pi^+ \pi^- decay mode. Using a convention without weak phases ϕ2\phi_2 and ϕ3\phi_3, we can solve the parameters from the time-depended CP asymmetry. If we can put a condition the contribution from penguin except for the CKM factor including in the diagram is small, then we can lead the allowed region of RtR_t or ϕ2\phi_2 by using the convention.Comment: 7 pages, 4 figures, references and comments adde
    • …
    corecore