71,294 research outputs found

    Contrasting Photoelectrochemical Behaviour Of Two Isomeric Supramolecular Dyes Based On Meso-tetra(pyridyl)porphyrin Incorporating Four (μ3-oxo)- Triruthenium(iii) Clusters

    Get PDF
    A saddle shaped tetracluster porphyrin species containing four [Ru 3O(OAc)6(py)2]+ clusters coordinated to the N-pyridyl atoms of 5,10,15,20-tetra(3-pyridyl)porphyrin, H 2(3-TCPyP), has been investigated in comparison with the planar tetra(4-pyridyl)porphyrin analogue H2(4-TCPyP). The steric effects from the bulky peripheral complexes play a critical role in the H 2(3-TCPyP) species, determining a non-planar configuration around the porphyrin centre and precluding any significant π-electronic coupling, in contrast with the less hindered H2(4-TCPyP) species. Both systems exhibit a photoelectrochemical response in the presence of nanocrystalline TiO2 films, involving the porphyrin excitation around 450 nm. However, only in the H2(4-TCPyP) case do the cluster moieties also contribute to the photoinduced electron injection process at 670 nm, reflecting the relevance of the electronic coupling between the porphyrin centre and the peripheral complexes. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.32711671174Araki, K., Toma, H.E., Supramolecular porphyrins as electrocatalysts, in (2006) N-4 Macrocyclic Metal Complexes, Ed., , J. H. Zagal, F. Bedioui and J.-P. Dodelet, Springer, pp. 255-302Toma, H.E., Araki, K., (2000) Coord. Chem. Rev., 196, p. 307Latos-Grazynski, L., Rachlewicz, K., Wojaczynski, J., (1999) Coord. Chem. Rev., 192, p. 109Imamura, T., Fukushima, K., (2000) Coord. Chem. Rev., 198, p. 133Sanders In, J.K.M., (2000) The Porphyrin Handbook, Ed., , K. M. Kadish, et al., Academic Press, New YorkChambron, J.C., Heitz, V., Sauvage In, J.P., (2000) The Porphyrin Handbook, Ed., , K. M. Kadish, et al., Academic Press, New YorkBaldini, L., Hunter, C.A., (2002) Advances in Inorganic Chemistry, Vol. 53Prodi, A., Indelli, M.T., Kleverlaan, C.J., Alessio, E., Scandola, F., (2002) Coord. Chem. Rev., 229, p. 51Rea, N., Loock, B., Lexa, D., (2001) Inorg. Chim. Acta, 312, p. 53Mayer, I., Nunes, G., Toma, H.E., (2006) Eur. J. Inorg. Chem., 4, p. 850Quintino, M.S., Araki, K., Toma, H.E., (2006) Talanta, 4 (68), p. 1281Winnischofer, H., Toma, H.E., Araki, K., (2006) J. Nanosci. Nanotechnol., 6, p. 1701Mayer, I., Nakamura, M., Toma, H.E., Araki, K., (2006) Electrochim. Acta, 52, p. 263Toma, H.E., Araki, K., (1990) J. Chem. Res. (S), p. 82Mayer, I., Formiga, A.L.B., Engelmann, F., Winnischofer, H., Oliveira, P.V., Tomazella, D.M., Toma, H.E., Araki, K., (2005) Inorg. Chim. Acta, 358, p. 2629Quintino, M.S., Winnischofer, H., Nakamura, M., Toma, H.E., Araki, K., Angnes, L., (2005) Anal. Chim. Acta, 539, p. 215Nunes, G., Mayer, I., Toma, H.E., Araki, K., (2005) J. Catal., 236, p. 55Araki, K., Winnischofer, H., Viana, H.E., Toyama, M.M., Engelmann, F., Mayer, I., Formiga, A.L.B., Toma, H.E., (2004) J. Electroanal. Chem., 562, p. 145Toma, H.E., Araki, K., Alexiou, A.D.P., Nikolaou, S., Dovidauskas, S., (2001) Coord. Chem. Rev., 219, p. 187Toma, H.E., Cipriano, C., (1989) J. Electroanal. Chem., 263, p. 313Toma, H.E., Matsumoto, F.M., Cipriano, C., (1993) J. Electroanal. Chem., 346, p. 261Toma, H.E., Araki, K., Silva, E.O., (1998) Monatsh. Chem., 129, p. 975Dovidauskas, S., Toma, H.E., Araki, K., Sacco, H.C., Iamamoto, Y., (2000) Inorg. Chim. Acta, 305, p. 206Araki, K., Dovidauskas, S., Winnischofer, H., Alexiou, A.D.P., Toma, H.E., (2001) J. Electroanal. Chem., 498, p. 152Winnischofer, H., Otake, V.Y., Dovidauskas, S., Nakamura, M., Araki, K., Toma, H.E., (2004) Electrochim. Acta, 49, p. 3711Sawyer, D.T., Roberts, J.L., (1974) Experimental Electrochemistry for Chemists, , WileyAdler, A.D., Longo, F.R., Finarell d, J., Goldmach, J., Assour, J., Korsakof, L., (1967) J. Org. Chem., 32, p. 476Kalyanasundaram, K., (1984) Inorg. Chem., 23, p. 2453Nazeeruddin, M.K., Kay, A., Humphry-Baker, R., Muller, E., Liska, P., Vanchopoulos, N., Grätzel, M., (1993) J. Am. Chem. Soc., 115, p. 6382Araki, K., Toma, H.E., (2002) Cur. Org. Chem., 6, p. 21Araki, K., Toma, H.E., (1993) J. Coord. Chem., 30, p. 9Meot-Ner, M., Adler, A.D., (1975) J. Am. Chem. Soc., 97, p. 5107Gouterman, M., (1961) J. Mol. Spectrosc., 6, p. 138Gouterman, M., Snyder, L.C., Wagniere, G.H., (1963) J. Mol. Spectrosc., 11, p. 108Baumann, J.A., Salmon, D.J., Wilson, S.T., Meyer, T.J., Hatfield, W.E., (1978) Inorg. Chem., 17, p. 3342Alexiou, A.D.P., Toma, H.E., (1997) J. Chem. Res. (S), p. 338Toma, H.E., Alexiou, A.D.P., (1995) J. Chem. Res. (S), p. 134Janson, T.R., Katz In, J.J., (1979) Nuclear Magnetic Resonance of Diamagnetic Porphyrins, Ed., , D. Dolphin, Academic PressChernook, A.V., Rempel, U., Vonborczyskowski, C., Shulga, A.M., Zenkevich, E.I., (1996) Chem. Phys. Lett., 254, p. 229Alessio, E., Geremia, S., Mestroni, S., Iengo, E., Srnova, I., Slouf, M., (1999) Inorg. Chem., 38, p. 869Alessio, E., Geremia, S., Mestroni, S., Srnova, I., Slouf, M., Gianferrara, T., Prodi, A., (1999) Inorg. Chem., 38, p. 2527Fleischer, E.B., Shachter, A.M., (1991) Inorg. Chem., 30, p. 3763Alexiou, A.D.P., Toma, H.E., (1993) J. Chem. Res. (S), p. 464O'Reagan, B., Grätzel, M., (1991) Nature, 353, p. 737Nazeeruddin, M.K., Humphry-Baker, R., Liska, P., Gratzel, M., (2003) J. Phys. Chem. B, 107, p. 8981Wang, P., Zekeeruddin, S.M., Moser, J.E., Humphry-Baker, R., Comte, P., Aranyos, V., Hagdeldt, A., Gratzel, M., (2003) Adv. Mater., 16, p. 1806Haque, S.A., Palomares, E., Cho, B.M., Green, A.N.M., Hirata, N., Klug, K.R., Durrant, J.R., (2005) J. Am. Chem. Soc., 127, p. 3456Tributsch, H., (2004) Coord. Chem. Rev., 248, p. 1511Wurfel, U., Wagner, J., Hinsch, A., (2005) J. Phys. Chem. B, 109, p. 20444Durr, M., Bamedi, A., Yasuda, A., Nelles, G., (2004) Appl. Phys. Let., 84, p. 3397Kroon, J.M., Bakker, N.J., Smit, H.S.P., Liska, P., Thampi, K.R., Wang, P., Zakeeruddin, S.M., Tulloch, G.E., (2007) Prog. Photovolt: Res. Appl., 15, p. 1Bignozzi, C.A., Argazzi, R., Indelli, M.T., Scandola, F., (1994) Sol. Energy Mater. Sol. Cells, 32, p. 229Haque, D.S., Handa, S., Peter, K., Palomares, E., Thelakkat, M., Durrant, J.R., (2005) Angew. Chem., Int. Ed., 44, p. 5740Nogueira, A.F., Toma, S.H., Vidotti, M., Formiga, A.L.B., Torresi, S.I.C., Toma, H.E., (2005) New J. Chem., 29, p. 320Nogueira, A.F., Furtado, L.F.O., Formiga, A.L.B., Toma, H.E., (2004) Inorg. Chem., 43, p. 396Nogueira, A.F., Formiga, A.L.B., Winnischofer, H., Toma, H.E., (2004) Photochem. Photobiol. Sci, 3, p. 56Furtado, L.F.O., Alexiou, A.D.P., Gonçalves, L., Toma, H.E., Araki, K., (2006) Angew. Chem., Int. Ed., 45, p. 314

    Classification of a family of non almost periodic free Araki-Woods factors

    Full text link
    We obtain a complete classification of a large class of non almost periodic free Araki-Woods factors Γ(μ,m)"\Gamma(\mu,m)" up to isomorphism. We do this by showing that free Araki-Woods factors Γ(μ,m)"\Gamma(\mu, m)" arising from finite symmetric Borel measures μ\mu on R\mathbf{R} whose atomic part μa\mu_a is nonzero and not concentrated on {0}\{0\} have the joint measure class C(k1μk)\mathcal C(\bigvee_{k \geq 1} \mu^{\ast k}) as an invariant. Our key technical result is a deformation/rigidity criterion for the unitary conjugacy of two faithful normal states. We use this to also deduce rigidity and classification theorems for free product von Neumann algebras.Comment: v2: minor changes, final version, to appear in Journal of the European Mathematical Societ

    Additivity of Entangled Channel Capacity for Quantum Input States

    Get PDF
    An elementary introduction into algebraic approach to unified quantum information theory and operational approach to quantum entanglement as generalized encoding is given. After introducing compound quantum state and two types of informational divergences, namely, Araki-Umegaki (a-type) and of Belavkin-Staszewski (b-type) quantum relative entropic information, this paper treats two types of quantum mutual information via entanglement and defines two types of corresponding quantum channel capacities as the supremum via the generalized encodings. It proves the additivity property of quantum channel capacities via entanglement, which extends the earlier results of V. P. Belavkin to products of arbitrary quantum channels for quantum relative entropy of any type.Comment: 17 pages. See the related papers at http://www.maths.nott.ac.uk/personal/vpb/research/ent_com.htm
    corecore