71 research outputs found

    Effects of poling and crystallinity on the dielectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 at cryogenic temperatures

    Get PDF
    The mechanisms underlying the anomalously large, room temperature piezoelectric activity of relaxor-PbTiO3 type single crystals have previously been linked to low temperature relaxations in the piezoelectric and dielectric properties. We investigate the properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 between 10 and 300 K using dielectric permittivity measurements. We compare results on single crystal plates measured in the [001] and [111] directions with a polycrystalline ceramic of the same composition. Poled crystals have very different behaviour to unpoled crystals, whereas the dielectric spectrum of the polycrystalline ceramic changes very little on poling. A large, frequency dependent dielectric relaxation is seen in the poled [001] crystal around 100 K. The relaxation is much less prominent in the [111] cut crystal, and is not present in the polycrystalline ceramic. The unique presence of the large relaxation in poled, [001] oriented crystals indicates that the phenomenon is not due their relaxor nature alone. We propose that heterophase dynamics such as the motion of phase domain boundaries are responsible for both the anomalous electromechanical and dielectric behaviour

    Effect of CaO and ZrO2 co-substitution on dielectric properties of BaTi2O5 prepared by arc melting

    No full text

    Relaxor Behavior on Phase Transition of (Sr 0.68

    No full text
    • …
    corecore