439 research outputs found

    Belle II iTOP Optics: Design, Construction and Performance

    Full text link
    The imaging-Time-of-Propogation (iTOP) counter is a new type of ring-imaging Cherenkov counter developed for particle identification at the Belle II experiment. It consists of 16 modules arranged azimuthally around the beam line. Each module consists of one mirror, one prism and two quartz bar radiators. Here we describe the design, acceptance test, alignment, gluing and assembly of the optical components. All iTOP modules have been successfully assembled and installed in the Belle II detector by the middle of 2016. After installation, laser and cosmic ray data have been taken to test the performance of the modules. First results from these tests are presented.Comment: Proceedings of TIPP 2017, May 22 - 26, Beijing, China, 2017; University of Cincinnati preprint UCHEP-17-07. arXiv admin note: text overlap with arXiv:1709.0993

    Cross-talk suppressed multi-anode MCP-PMT

    Full text link
    We have developed a 4-channel multi-anode MCP-PMT, SL10, which exhibits a performance of sigma_TTS ~ 30 ps for single photons with G ~ 10^6 and QE=20% under a magnetic field of B <= 1.5 T. The cross-talk among anodes has been extensively studied. We have taken two measures to suppress it: one is to configure the SL10 to an effectively independent 4 small pieces of MCP-PMT's by segmenting an electrode of the second MCP-layer; the other is to use a constant fractional discriminator. Remarkable improvement has been achieved.Comment: 14 pages, 14 figure

    Diffraction from Ordered States of Higher Multipoles

    Full text link
    Possible ways of identification are discussed of an electronic order of higher multipoles such as octupoles and hexadecapoles. A particularly powerful method is resonant X-ray scattering (RXS) using quadrupolar resonance processes called E2.The characteristic azimuthal angle dependence of Ce0.7_{0.7}La0.3_{0.3}B6_6 is interpreted as evidence of antiferro-octupole order. For PrRu4_4P12_{12}, eightfold pattern against azimuthal angle is predicted if its metal-insulator transition is a consequence of a hexadecapole order. In non-resonant superlattice Bragg scattering, hexadecapole contribution may also be identified because of absence of quadrupole component.Comment: Invited paper to be published in Proc. Hiroshima Workshop on Novel Functional Materials with Multinary Freedoms (Physica B, 2006

    Tunneling and rattling in clathrate crystal

    Full text link
    We present tunneling and rattling motions of an off-center guest atom in cage referring to a clathrate crystal La_3Pd_{20}Ge_6. The elastic constant C_{44} of La_3Pd_{20}Ge_6 shows a Debye-type dispersion around 20 K obeying a relaxation time tau = tau_0exp(E/k_{B}T) with an attempt time tau_0 = 2.0*10^{-12} sec and an activation energy E = 197 K. At low temperatures below 3 K down to 20 mK, the C_{44} shows a softening of C_{44} = C_{44}^0(T-T_C^0)/(T-Theta) with T_C^0 = -337.970 mK and Theta = -338.044 mK. These facts are attributed to two different types of the off-center motions with Gamma_5 symmetry in 4a-site cage of La_3Pd_{20}Ge_6, a thermally activated rattling motion over the potential hill and a tunneling motion through the potential hill at low temperatures.Comment: 5 pages, 4 figures, to be published Phys. Rev.

    Elastic Properties and Magnetic Phase Diagrams of Dense Kondo Compound Ce0.75La0.25B6

    Full text link
    We have investigated the elastic properties of the cubic dense Kondo compound Ce0.75La0.25B6 by means of ultrasonic measurements. We have obtained magnetic fields vs temperatures (H-T) phase diagrams under magnetic fields along the crystallographic [001], [110] and [111] axes. An ordered phase IV showing the elastic softening of c44 locates in low temperature region between 1.6 and 1.1 K below 0.7 T in all field directions. The phase IV shows an isotropic nature with regard to the field directions, while the antiferro-magnetic phase III shows an anisotropic character. A remarkable softening of c44 and a spontaneous trigonal distortion &#949;yz+&#949;zx+&#949;xy recently reported by Akatsu et al. [J. Phys. Soc. Jpn. 72 (2003) 205] in the phase IV favor a ferro-quadrupole (FQ) moment of Oyz+Ozx+Oxy induced by an octupole ordering.Comment: 9 figures, Strongly Correlated Electron

    Evidence for Octupole Order in Ce0.7_{0.7}La0.3_{0.3}B6_6 from Resonant X-ray Scattering

    Full text link
    The azimuthal angle dependence observed in the resonant X-ray scattering in phase IV of Ce0.7_{0.7}La0.3_{0.3}B6_6 is analyzed theoretically. It is shown that the peculiar angle dependence observed in the E2 channel is consistent with the Gamma_{5u}-type octupole order with principal axis along (111) and equivalent directions. Under the assumption that the four equivalent octupole domains are nearly equally populated in the sample, the observed angle dependences are reproduced by calculation for both sigma-sigma' and sigma-pi' polarizations. The calculation for various symmetries of order parameters excludes unambiguously other order parameters than the Gamma_{5u}-type octupole.Comment: 4 pages, 2 figures, 3 tables, in JPSJ forma

    Neutral B Flavor Tagging for the Measurement of Mixing-induced CP Violation at Belle

    Full text link
    We describe a flavor tagging algorithm used in measurements of the CP violation parameter sin2phi_1 at the Belle experiment. Efficiencies and wrong tag fractions are evaluated using flavor-specific B meson decays into hadronic and semileptonic modes. We achieve a total effective efficiency of $ 28.8 +- 0.6 %.Comment: 28 pages, 9 figure

    Spectral Correlation in Incommensurate Multi-Walled Carbon Nanotubes

    Full text link
    We investigate the energy spectra of clean incommensurate double-walled carbon nanotubes, and find that the overall spectral properties are described by the so-called critical statistics of Anderson metal-insulator transition. In the energy spectra, there exist three different regimes characterized by Wigner-Dyson, Poisson, and semi-Poisson distributions. This feature implies that the electron transport in incommensurate multi-walled nanotubes can be either diffusive, ballistic, or intermediate between them, depending on the position of the Fermi energy.Comment: final version to appear in Phys. Rev. Let
    • …
    corecore