62 research outputs found

    Two--Electron Atoms in Short Intense Laser Pulses

    Full text link
    We discuss a method of solving the time dependent Schrodinger equation for atoms with two active electrons in a strong laser field, which we used in a previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to calculate ionization, double excitation and harmonic generation in Helium by short laser pulses. The method employs complex scaling and an expansion in an explicitly correlated basis. Convergence of the calculations is documented and error estimates are provided. The results for Helium at peak intensities up to 10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly accurate calculations are presented for electron detachment and double excitation of the negative hydrogen ion.Comment: 14 pages, including figure

    The helium atom in a strong magnetic field

    Get PDF
    We investigate the electronic structure of the helium atom in a magnetic field b etween B=0 and B=100a.u. The atom is treated as a nonrelativistic system with two interactin g electrons and a fixed nucleus. Scaling laws are provided connecting the fixed-nucleus Hamiltonia n to the one for the case of finite nuclear mass. Respecting the symmetries of the electronic Ham iltonian in the presence of a magnetic field, we represent this Hamiltonian as a matrix with res pect to a two-particle basis composed of one-particle states of a Gaussian basis set. The corresponding generalized eigenvalue problem is solved numerically, providing in the present paper results for vanish ing magnetic quantum number M=0 and even or odd z-parity, each for both singlet and triplet spin symmetry. Total electronic energies of the ground state and the first few excitations in each su bspace as well as their one-electron ionization energies are presented as a function of the magnetic fie ld, and their behaviour is discussed. Energy values for electromagnetic transitions within the M=0 sub space are shown, and a complete table of wavelengths at all the detected stationary points with respect to their field dependence is given, thereby providing a basis for a comparison with observed ab sorption spectra of magnetic white dwarfs.Comment: 21 pages, 4 Figures, acc.f.publ.in J.Phys.

    Barotropic tides in the Northeast Atlantic inferred from moored current meter data

    Get PDF
    Current data obtained from 7 moorings in the Northeast Atlantic in the course of many years are analysed with respect to semi-diurnal barotropic and baroclinic tides and diurnal barotropic tides. For semi-diurnal tides M2 and S2 the energy distribution is usually dominated by the barotropic mode; only in a few cases does the first-order baroclinic mode contain higher energy. Barotropic tidal ellipse orientations are found to be consistent with results from earlier tide gauge observations in this area. Significant deviations occur, however, in amplitudes. Results for the diurnal component K1 are also presented. With few exceptions, tides are found to be progressive waves in this area. The current ellipse pattern is similar to results obtained indirectly by Cartwright, Edden, Spencer et al. [1980] from tide gauge observations

    Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment

    Get PDF
    High-precision laser-resonance measurements accurate to ±0.5 MHz or better are reported for transitions among the 1s2s 3S1-1s2p 3PJ hyperfine manifolds for each of J=0, 1, and 2 in both Li+6 and Li+7. A detailed analysis of hyperfine structure is performed for both the S and P states, using newly calculated values for the magnetic dipole and electric quadrupole coupling constants, and the hyperfine shifts subtracted from the measurements. The resulting transition frequencies are then analyzed on three different levels. First, the isotope shifts in the fine-structure splittings are calculated from the relativistic reduced mass and recoil terms in the Breit interaction, and compared with experiment at the ±0.5-MHz level of accuracy. This comparison is particularly significant because J-independent theoretical uncertainties reduce through cancellation to the ±0.01-MHz level. Second, the isotope shifts in the full transition frequencies are used to deduce the difference in rms nuclear radii. The result is Rrms(6Li)-Rrms(7Li)=0.15±0.01 fm, in agreement with nuclear scattering data, but with substantially improved accuracy. Third, high-precision calculations of the low-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for Li+7 is 37 429.40±0.39 MHz, with an additional uncertainty of ±1.5 MHz due to finite nuclear size corrections. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (αZ)4 recently obtained by Chen, Cheng, and Johnson [Phys. Rev. A 47, 3692 (1993)], and the results used to extract a QED shift for the 2 3S1 state. The result of 30 254±12 MHz is shown to be in good accord with theory (30 250±30 MHz) when two-electron corrections to the Bethe logarithm are taken into account by a 1/Z expansion method. © 1994 The American Physical Society

    Atherosclerosis and Alzheimer - diseases with a common cause? Inflammation, oxysterols, vasculature

    Full text link

    Theory of Homogeneous Dynamos in a Rotating Liquid Sphere

    No full text

    Tides in oceans of the form of a cross

    No full text

    Helium Data for Strong Magnetic Fields Obtained by Finite Element Calculations

    No full text
    corecore