12,073 research outputs found

    Patient Specific Congestive Heart Failure Detection From Raw ECG signal

    Full text link
    In this study; in order to diagnose congestive heart failure (CHF) patients, non-linear second-order difference plot (SODP) obtained from raw 256 Hz sampled frequency and windowed record with different time of ECG records are used. All of the data rows are labelled with their belongings to classify much more realistically. SODPs are divided into different radius of quadrant regions and numbers of the points fall in the quadrants are computed in order to extract feature vectors. Fisher's linear discriminant, Naive Bayes, Radial basis function, and artificial neural network are used as classifier. The results are considered in two step validation methods as general k-fold cross-validation and patient based cross-validation. As a result, it is shown that using neural network classifier with features obtained from SODP, the constructed system could distinguish normal and CHF patients with 100% accuracy rate. KeywordsComment: Congestive heart failure, ECG, Second-Order Difference Plot, classification, patient based cross-validatio

    Pachyonychia congenita type I with severe oral leukokeratosis

    Get PDF
    Pachyonychia Congenita (PC) is a rare autosomal dominant keratin disorder that affects a number of ectodermal structures including the nails and palmoplantar skin, and often involves the oral mucosa, tongue, larynx, teeth and hair. Clinical features are usually present at birth or early infancy. There are two main subtypes of PC. Fingernail thickening and oral keratosis are more common and severe in PC-1 and cystic lesions, hair abnormalities, natal teeth and pili torti are more common in PC-2. We report the case of a 6-year-old boy with PC-1 presenting with severe and painful oral leukokeratosis and extensive caries

    Adaptive Synchronization of Robotic Sensor Networks

    Full text link
    The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, we present the application and the evaluation of the existing synchronization methods on robotic sensor networks. We show through simulations that Adaptive Value Tracking synchronization is robust and efficient under mobility. Hence, deducing the time synchronization problem in robotic sensor networks into a dynamic value searching problem is preferable to existing synchronization methods in the literature.Comment: First International Workshop on Robotic Sensor Networks part of Cyber-Physical Systems Week, Berlin, Germany, 14 April 201
    corecore