25,116 research outputs found
High efficiency dark-to-bright exciton conversion in carbon nanotubes
We report that dark excitons can have a large contribution to the emission
intensity in carbon nanotubes due to an efficient exciton conversion from a
dark state to a bright state. Time-resolved photoluminescence measurements are
used to investigate decay dynamics and diffusion properties of excitons, and we
obtain intrinsic lifetimes and diffusion lengths of bright excitons as well as
diffusion coefficients for both bright and dark excitons. We find that the
dark-to-bright transition rates can be considerably high, and that more than
half of the dark excitons can be transformed into the bright excitons. The
state transition rates have a large chirality dependence with a family pattern,
and the conversion efficiency is found to be significantly enhanced by adsorbed
air molecules on the surface of the nanotubes. Our findings show the nontrivial
significance of the dark excitons on the emission kinetics in low dimensional
materials, and demonstrate the potential for engineering the dark-to-bright
conversion process by using surface interactions.Comment: 7 pages, 4 figure
Single carbon nanotubes as ultrasmall all-optical memories
Performance improvements are expected from integration of photonic devices
into information processing systems, and in particular, all-optical memories
provide a key functionality. Scaling down the size of memory elements is
desirable for high-density integration, and the use of nanomaterials would
allow for devices that are significantly smaller than the operation
wavelengths. Here we report on all-optical memory based on individual carbon
nanotubes, where adsorbed molecules give rise to optical bistability. By
exciting at the high-energy tail of the excitonic absorption resonance,
nanotubes can be switched between the desorbed state and the adsorbed state. We
demonstrate reversible and reproducible operation of the nanotube optical
memory, and determine the rewriting speed by measuring the molecular adsorption
and desorption times. Our results underscore the impact of molecular-scale
effects on optical properties of nanomaterials, offering new design strategies
for photonic devices that are a few orders of magnitude smaller than the
optical diffraction limit.Comment: 8 pages, 6 figure
QED Radiative Corrections to the Non-annihilation Processes Using the Structure Function and the Parton Shower
Inclusion of the QED higher order radiative corrections in the two-photon
process, e+e- -> e+e- mu+mu-, is examined by means of the structure function
and the parton shower. Results are compared with the exact
calculations and give a good agreement. These two methods should be universally
applicable to any other non-annihilation processes like the single-W
productions in the e+e- collisions. In this case, however, the energy scale for
the evolution by the renormalization-group equation should be chosen properly
depending on the dominant diagrams for the given process. A method to find the
most suitable energy scale is proposed.Comment: 17 pages, LaTeX, 5 figure
Stark effect of excitons in individual air-suspended carbon nanotubes
We investigate electric-field induced redshifts of photoluminescence from
individual single-walled carbon nanotubes. The shifts scale quadratically with
field, while measurements with different excitation powers and energies show
that effects from heating and relaxation pathways are small. We attribute the
shifts to the Stark effect, and characterize nanotubes with different
chiralities. By taking into account exciton binding energies for air-suspended
tubes, we find that theoretical predictions are in quantitative agreement.Comment: 4 pages, 3 figure
QED Radiative Correction for the Single-W Production using a Parton Shower Method
A parton shower method for the photonic radiative correction is applied to
the single W-boson production processes. The energy scale for the evolution of
the parton shower is determined so that the correct soft-photon emission is
reproduced. Photon spectra radiated from the partons are compared with those
from the exact matrix elements, and show a good agreement. Possible errors due
to a inappropriate energy-scale selection or due to the ambiguity of energy
scale determination are also discussed, particularly for the measurements on
triple gauge-couplings.Comment: 17 pages, 6 Postscript figure
- …