30 research outputs found

    DS-MENet for the Classification of Citrus Disease

    Get PDF
    Affected by various environmental factors, citrus will frequently suffer from diseases during the growth process, which has brought huge obstacles to the development of agriculture. This paper proposes a new method for identifying and classifying citrus diseases. Firstly, this paper designs an image enhancement method based on the MSRCR algorithm and homomorphic filtering algorithm optimized by Laplacian (HFLF-MS) to highlight the disease characteristics of citrus. Secondly, we designed a new neural network DS-MENet based on the DenseNet-121 backbone structure. In DS-MENet, the regular convolution in Dense Block is replaced with depthwise separable convolution, which reduces the network parameters. The ReMish activation function is used to alleviate the neuron death problem caused by the ReLU function and improve the robustness of the model. To further enhance the attention to citrus disease information and the ability to extract feature information, a multi-channel fusion backbone enhancement method (MCF) was designed in this work to process Dense Block. We use the 10-fold cross-validation method to conduct experiments. The average classification accuracy of DS-MENet on the dataset after adding noise can reach 95.02%. This shows that the method has good performance and has certain feasibility for the classification of citrus diseases in real life

    DS-MENet for the Classification of Citrus Disease

    Get PDF
    Affected by various environmental factors, citrus will frequently suffer from diseases during the growth process, which has brought huge obstacles to the development of agriculture. This paper proposes a new method for identifying and classifying citrus diseases. Firstly, this paper designs an image enhancement method based on the MSRCR algorithm and homomorphic filtering algorithm optimized by Laplacian (HFLF-MS) to highlight the disease characteristics of citrus. Secondly, we designed a new neural network DS-MENet based on the DenseNet-121 backbone structure. In DS-MENet, the regular convolution in Dense Block is replaced with depthwise separable convolution, which reduces the network parameters. The ReMish activation function is used to alleviate the neuron death problem caused by the ReLU function and improve the robustness of the model. To further enhance the attention to citrus disease information and the ability to extract feature information, a multi-channel fusion backbone enhancement method (MCF) was designed in this work to process Dense Block. We use the 10-fold cross-validation method to conduct experiments. The average classification accuracy of DS-MENet on the dataset after adding noise can reach 95.02%. This shows that the method has good performance and has certain feasibility for the classification of citrus diseases in real life

    Role of Heat Shock Proteins in Atrial Fibrillation: From Molecular Mechanisms to Diagnostic and Therapeutic Opportunities

    Get PDF
    Heat shock proteins (HSPs) are endogenous protective proteins and biomarkers of cell stress response, of which examples are HSP70, HSP60, HSP90, and small HSPs (HSPB). HSPs protect cells and organs, especially the cardiovascular system, against harmful and cytotoxic conditions. More recent attention has focused on the roles of HSPs in the irreversible remodeling of atrial fibrillation (AF), which is the most common arrhythmia in clinical practice and a significant contributor to mortality. In this review, we investigated the relationship between HSPs and atrial remodeling mechanisms in AF. PubMed was searched for studies using the terms "Heat Shock Proteins" and "Atrial Fibrillation" and their relevant abbreviations up to 10 July 2022. The results showed that HSPs have cytoprotective roles in atrial cardiomyocytes during AF by promoting reverse electrical and structural remodeling. Heat shock response (HSR) exhaustion, followed by low levels of HSPs, causes proteostasis derailment in cardiomyocytes, which is the basis of AF. Furthermore, potential implications of HSPs in the management of AF are discussed in detail. HSPs represent reliable biomarkers for predicting and staging AF. HSP inducers may serve as novel therapeutic modalities in postoperative AF. HSP induction, either by geranylgeranylacetone (GGA) or by other compounds presently in development, may therefore be an interesting new approach for upstream therapy for AF, a strategy that aims to prevent AF whilst minimizing the ventricular proarrhythmic risks of traditional anti-arrhythmic agents

    Is routine drainage necessary after thyroid surgery? A randomized controlled trial study

    Get PDF
    ObjectiveTo evaluate whether no drainage has an advantage over routine drainage in patients with thyroid carcinoma after unilateral thyroid lobectomy and central neck dissection.MethodsA total of 104 patients with thyroid cancer who underwent unilateral thyroid lobectomy and central lymph node dissection were randomly assigned into no drainage tube (n=52) and routine drainage tube (n=52) placement groups. General information of each patient was recorded, including the postoperative drainage volume/residual cavity fluid volume, postoperative complications, incision area comfort, and other data, and the thyroid cancer-specific quality of life questionnaire (THYCA-QoL) and patient and observer scar assessment scale (POSAS) were evaluated after surgery. At the 3–6 month follow-up exam, the differences between the two groups were compared based on univariate analysis.ResultsSignificant differences were not observed in the general and pathological information (including sex, age, body weight, body mass index (BMI), incision length, specimen volume, Hashimoto’s thyroiditis, and number of lymph nodes dissected), operation time, and postoperative complications (postoperative bleeding, incision infection, lymphatic leakage, and temporary hypoparathyroidism) between the two groups. The patients in the non-drainage group had a shorter hospital stay (2.11 ± 0.33 d) than the patients in the drainage group (3.38 ± 0.90 d) (P<0.001). The amount of cervical effusion in patients in the non-drainage group (postoperative 24h: 2.20 ± 1.24 ml/48 h: 1.53 ± 1.07 ml) was significantly less than that in the drainage group (postoperative 24 hours: 22.58 ± 5.81 ml/48 h: 36.15 ± 7.61 ml) (all P<0.001). The proportion of incision exudation and incision numbness in the non-drainage group was lower than that in the drainage group (all P<0.05), and the pain score (VAS) and neck foreign body sensation score (FBST) decreased significantly (P<0.05). During the 3- and 6-month follow-up exams, significant differences were not observed between the THYCA-QoL and drainage groups and the non-drainage group, although the scarring and POSAS values were lower than those in the drainage group. In addition, the length of stay and cost of hospitalization in the non-drainage group were lower than those in the drainage group (P<0.05).ConclusionRoutine drainage tube insertion is not needed in patients with unilateral thyroid lobectomy and central neck dissection

    The mechanical response of vinculin

    Get PDF
    Vinculin is a mechanosensitive adapter protein that links the actin network to cell-extracellular matrix adhesions and cell-cell adhesions. It is perhaps the best characterized mechanoeffector, as it is recruited to sites of adhesion in response to force on the mechanotransducers talin and alpha-catenin. Here we examined the mechanical properties of vinculin to assess its potential role as a mechanotransducer. We find that at physiological loading rates, the structural domains of vinculin unfold at forces in the 5-15 pN range and rapidly refold when forces are reduced back to 1 pN. Thus, vinculin domains also have the potential to act as force dependent molecular switches, akin to those in talin and alpha-catenin. As with the force dependent switches in talin, the unfolding of these domains in vinculin introduces large extension changes in the vinculin cytoskeletal linkage up to 150 nm with 20-30 nm steps of unfolding. Modelling of the tension-dependent interactions of the unstructured vinculin linker region with a model protein containing two SH3 domains indicated that even unstructured protein regions can mediate force-dependent interactions with ligands, where the binding of a dual-SH3 model protein is predicted to be significantly suppressed by forces greater than 10 pN. Together, these findings suggest that vinculin has a complex mechanical response with force-dependent interaction sites, suggesting it also acts as a mechanotransducer, recruiting partners in response to force

    TIR-INDUCED ACTIN FILAMENT ASSEMBLY IN THE ABSENCE OF ENTEROPATHOGENIC ESCHERICHIA COLI (EPEC)

    No full text
    Ph.DDOCTOR OF PHILOSOPHY (NGS-MBI

    Research overview on vibration damping of mistuned bladed disk assemblies

    No full text
    Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented

    A narrative review on prediabetes or diabetes and atrial fibrillation: From molecular mechanisms to clinical practice

    No full text
    Based on glucose levels, people fall into three groups, normal individuals, prediabetic patients, and diabetic mellitus (DM) patients. Prediabetes (pre-DM) is an intermediate condition that exists between normal glucose levels and DM. Atrial fibrillation (AF), one of the most prevalent cardiac arrhythmias in medical practice, contributes to a considerable morbidity and mortality rate. In this review, we looked at the clinical symptoms, pathological alterations, molecular mechanisms, and associated risk factors of pre-DM, type 2 DM (T2DM), and AF. In clinical practice, pre-DM can increase the prevalence of AF. In the hyperglycemic state, oxidative stress, inflammation, and endoplasmic reticulum stress can cause alterations in atrial cell or cardiac fibroblast function through tumor necrosis factor-α/nuclear factor-κB (NF-κB)/transforming growth factor-β, mitogen-activated protein kinase-matrix metalloproteinase-9 and PARP-1 is poly (ADP-ribose) polymerase 1. IκB kinase-α/NF-κB pathways, and further cause atria undergo structural, electrical, and neural remodeling which lead to the occurrence and persistence of AF. In addition, pre-DM and T2DM may worsen as a result of obesity, obstructive sleep apnea, and arterial hypertension. Furthermore, clinical researches have demonstrated that lifestyle interventions and/or pharmacotherapy in pre-DM patients can effectively delay the progresssion of pre-DM to T2DM. Individualized glycemic management and AF management should be provided to AF patients with pre-DM or DM

    Role of Heat Shock Proteins in Atrial Fibrillation: From Molecular Mechanisms to Diagnostic and Therapeutic Opportunities

    No full text
    Heat shock proteins (HSPs) are endogenous protective proteins and biomarkers of cell stress response, of which examples are HSP70, HSP60, HSP90, and small HSPs (HSPB). HSPs protect cells and organs, especially the cardiovascular system, against harmful and cytotoxic conditions. More recent attention has focused on the roles of HSPs in the irreversible remodeling of atrial fibrillation (AF), which is the most common arrhythmia in clinical practice and a significant contributor to mortality. In this review, we investigated the relationship between HSPs and atrial remodeling mechanisms in AF. PubMed was searched for studies using the terms “Heat Shock Proteins” and “Atrial Fibrillation” and their relevant abbreviations up to 10 July 2022. The results showed that HSPs have cytoprotective roles in atrial cardiomyocytes during AF by promoting reverse electrical and structural remodeling. Heat shock response (HSR) exhaustion, followed by low levels of HSPs, causes proteostasis derailment in cardiomyocytes, which is the basis of AF. Furthermore, potential implications of HSPs in the management of AF are discussed in detail. HSPs represent reliable biomarkers for predicting and staging AF. HSP inducers may serve as novel therapeutic modalities in postoperative AF. HSP induction, either by geranylgeranylacetone (GGA) or by other compounds presently in development, may therefore be an interesting new approach for upstream therapy for AF, a strategy that aims to prevent AF whilst minimizing the ventricular proarrhythmic risks of traditional anti-arrhythmic agents

    Highly conductive polymer electrolytes based on PAN-PEI nanofiber membranes with in situ gelated liquid electrolytes for lithium-ion batteries

    No full text
    The development of solid state electrolytes is considered as an effective approach to build safer lithium-ion batteries by replacing the conventional liquid electrolytes. However, the solid state electrolytes face continuous challenges to improve their ionic conductivities and mechanical properties. Herein, we report the synthesis of novel polymer electrolytes based on cross-linked polyacrylonitrile-polyethylenimine (PAN-PEI) nanofiber membranes infiltrated with in-situ gelated electrolytes using tripropylene glycol diacrylate as crosslinking agent in the organic carbonate-based liquid electrolytes. The PAN-PEI nanofiber membranes with different mass ratios of PAN/PEI prepared by electrospinning method are constructed with entangled nanofibers of an average diameter of similar to 600 nm. The optimized PAN-PEI based electrolyte has a high ionic conductivity up to 3.39 mS cm(-1) at room-temperature and decent tensile strength of 9.36 MPa. Linear sweep voltammetry shows that the polymer electrolyte also has a wide electrochemical window of 5.4 V (vs. Li/Li+). This polymer electrolyte exhibits excellent cycling stability even in the high energy density of LiNi0.8Co0.1Mn0.1O2/Graphite, delivering an initial discharge capacity of 175 mAh g(-1) at 0.5 C with a capacity retention of 91.4% after 200 cycles
    corecore