1,519 research outputs found

    Individualism-collectivism and interpersonal memory guidance of attention

    Get PDF
    Recently it has been shown that the allocation of attention by a participant in a visual search task can be affected by memory items that have to be maintained by a co-actor, when similar tasks are jointly engaged by dyads (He, Lever, & Humphreys, 2011). In the present study we examined the contribution of individualism-collectivism to this ā€˜interpersonal memory guidanceā€™ effect. Actors performed visual search while a preview image was either held by the critical participant, held by a co-actor or was irrelevant to either participant. Attention during search was attracted to stimuli that matched the contents of the co-actorā€™s memory. This interpersonal effect correlated with the collectivism scores, and was enhanced by priming with a collectivistic scenario. The dimensions of individualism, however, did not contribute to performance. These data suggest that collectivism, but not individualism, modulates interpersonal influences on memory and attention in joint action

    Quantum dynamics of an Ising spin-chain in a random transverse field

    Full text link
    We consider an Ising spin-chain in a random transverse magnetic field and compute the zero temperature wave vector and frequency dependent dynamic structure factor numerically by using Jordan-Wigner transformation. Two types of distributions of magnetic fields are introduced. For a rectangular distribution, a dispersing branch is observed, and disorder tends to broaden the dispersion peak and close the excitation gap. For a binary distribution, a non-dispersing branch at almost zero energy is recovered. We discuss the relationship of our work to the neutron scattering measurement in LiHoF4\mathrm{LiHoF_4}.Comment: 4 pages and 6 eps figures; minor clarifications were made; the text was shortened to add an additional figur

    Internal Josephson-Like Tunneling in Two-Component Bose-Einstein Condensates Affected by Sign of the Atomic Interaction and External Trapping Potential

    Full text link
    We study the Josephson-like tunneling in two-component Bose-Einstein condensates coupled with microwave field in respond to various attractive and repulsive atomic interaction under the various aspect ratio of trapping potential and the gravitational field. It is very interesting to find that the dynamic of Josephson-like tunneling can be controlled from fast damped oscillations and asymmetric occupation to nondamped oscillation and symmetric occupation.Comment: 4 pages, 5 figure

    Learning Rich Geographical Representations: Predicting Colorectal Cancer Survival in the State of Iowa

    Full text link
    Neural networks are capable of learning rich, nonlinear feature representations shown to be beneficial in many predictive tasks. In this work, we use these models to explore the use of geographical features in predicting colorectal cancer survival curves for patients in the state of Iowa, spanning the years 1989 to 2012. Specifically, we compare model performance using a newly defined metric -- area between the curves (ABC) -- to assess (a) whether survival curves can be reasonably predicted for colorectal cancer patients in the state of Iowa, (b) whether geographical features improve predictive performance, and (c) whether a simple binary representation or richer, spectral clustering-based representation perform better. Our findings suggest that survival curves can be reasonably estimated on average, with predictive performance deviating at the five-year survival mark. We also find that geographical features improve predictive performance, and that the best performance is obtained using richer, spectral analysis-elicited features.Comment: 8 page

    Empirical risk minimization for metric learning using privileged information

    Full text link
    Traditional metric learning methods usually make decisions based on a fixed threshold, which may result in a suboptimal metric when the inter-class and inner-class variations are complex. To address this issue, in this paper we propose an effective metric learning method by exploiting privileged information to relax the fixed threshold under the empirical risk minimization framework. Privileged information describes useful high-level semantic information that is only available during training. Our goal is to improve the performance by incorporating privileged information to design a locally adaptive decision function. We jointly learn two distance metrics by minimizing the empirical loss penalizing the difference between the distance in the original space and that in the privileged space. The distance in the privileged space functions as a locally adaptive decision threshold, which can guide the decision making like a teacher. We optimize the objective function using the Accelerated Proximal Gradient approach to obtain a global optimum solution. Experiment results show that by leveraging privileged information, our proposed method can achieve satisfactory performance

    Quantum Hall plateau transition in the lowest Landau level of disordered graphene

    Full text link
    We investigate, analytically and numerically, the effects of disorder on the density of states and on the localization properties of the relativistic two dimensional fermions in the lowest Landau level. Employing a supersymmetric technique, we calculate the exact density of states for the Cauchy (Lorentzian) distribution for various types of disorders. We use a numerical technique to establish the localization-delocalization (LD) transition in the lowest Landau level. For some types of disorder the LD transition is shown to belong to a different universality class, as compared to the corresponding nonrelativistic problem. The results are relevant to the integer quantum Hall plateau transitions observed in graphene.Comment: 18 pages and 11 figure

    Antibunching photons in a cavity coupled to an optomechanical system

    Full text link
    We study the photon statistics of a cavity linearly coupled to an optomechanical system via second order correlation functions. Our calculations show that the cavity can exhibit strong photon antibunching even when optomechanical interaction in the optomechanical system is weak. The cooperation between the weak optomechanical interaction and the destructive interference between different paths for two-photon excitation leads to the efficient antibunching effect. Compared with the standard optomechanical system, the coupling between a cavity and an optomechanical system provides a method to relax the constraints to obtain single photon by optomechanical interaction.Comment: 7 papes, 5 figure

    New interpretation of matter-antimatter asymmetry based on branes and possible observational consequences

    Full text link
    Motivated by the AMS project, we assume that after the Big Bang or inflation epoch, antimatter was repelled onto one brane which is separated from our brane where all the observational matter resides. It is suggested that CP may be spontaneously broken, the two branes would correspond to ground states for matter and antimatter respectively. Generally a complex scalar field which is responsible for the spontaneous CP violation, exists in the space between the branes and causes a repulsive force against the gravitation. A possible potential barrier prevents the mater(antimatter) particles to enter the space between two branes. However, by the quantum tunnelling, a sizable anti-matter flux may come to our brane. In this work by considering two possible models, i.e. the naive flat space-time and Randall-Sundrum models and using the observational data on the visible matter in our universe as inputs, we derive the antimatter flux which would be observed by the AMS detector.Comment: 10 pages, 4 figures and 2 tables. Replaced by new versio
    • ā€¦
    corecore