42 research outputs found
Deciphering the causal association and co-disease mechanisms between psoriasis and breast cancer
BackgroundPrior research has indicated a link between psoriasis and the susceptibility to breast cancer (BC); however, a definitive causal relationship remains elusive. This study sought to elucidate the causal connection and shared underlying mechanisms between psoriasis and BC through bidirectional Mendelian randomization (MR) and bioinformatic approaches.MethodsWe employed a bidirectional MR approach to examine the potential causal connection between psoriasis and BC. Genetic data pertaining to psoriasis and BC were sourced from extensive published genome-wide association studies. The inverse -variance weighted or wald ratio served as the primary method for estimating causal effects. Sensitivity analysis of the MR results was applied with multiple methods. Leveraged datasets from the Gene Expression Omnibus and the Cancer Genome Atlas repositories to identify common differentially expressed genes, shedding light on the shared mechanisms underlying these two conditions.ResultsThe MR analysis revealed that when considering psoriasis as an exposure factor, the incidences of BC (OR=1.027) and estrogen receptor negative (ER-) BC (OR=1.054) were higher than in the general population. When using Her2+ BC as an exposure factor, the risk of psoriasis was 0.822 times higher (OR=0.822) than in the general population. Sensitivity analysis indicated that the results were robust. Transcriptome analysis showed that CXCL13 and CCL20 were activated in both BC and psoriasis. Both diseases were also linked to neutrophil chemotaxis, the IL-17 pathway, and the chemokine pathway.ConclusionThe results suggest that psoriasis may increase the risk of BC, especially ER- BC, while reverse MR suggests a decreased risk of psoriasis in Her2+ BC. Transcriptome analysis revealed a shared mechanism between psoriasis and BC
A Single-Cell Atlas of Bovine Skeletal Muscle Reveals Mechanisms Regulating Intramuscular Adipogenesis and Fibrogenesis
Background
Intramuscular fat (IMF) and intramuscular connective tissue (IMC) are often seen in human myopathies and are central to beef quality. The mechanisms regulating their accumulation remain poorly understood. Here, we explored the possibility of using beef cattle as a novel model for mechanistic studies of intramuscular adipogenesis and fibrogenesis.
Methods
Skeletal muscle single-cell RNAseq was performed on three cattle breeds, including Wagyu (high IMF), Brahman (abundant IMC but scarce IMF), and Wagyu/Brahman cross. Sophisticated bioinformatics analyses, including clustering analysis, gene set enrichment analyses, gene regulatory network construction, RNA velocity, pseudotime analysis, and cell-cell communication analysis, were performed to elucidate heterogeneities and differentiation processes of individual cell types and differences between cattle breeds. Experiments were conducted to validate the function and specificity of identified key regulatory and marker genes. Integrated analysis with multiple published human and non-human primate datasets was performed to identify common mechanisms.
Results
A total of 32 708 cells and 21 clusters were identified, including fibro/adipogenic progenitor (FAP) and other resident and infiltrating cell types. We identified an endomysial adipogenic FAP subpopulation enriched for COL4A1 and CFD (log2FC = 3.19 and 1.92, respectively; P \u3c 0.0001) and a perimysial fibrogenic FAP subpopulation enriched for COL1A1 and POSTN (log2FC = 1.83 and 0.87, respectively; P \u3c 0.0001), both of which were likely derived from an unspecified subpopulation. Further analysis revealed more progressed adipogenic programming of Wagyu FAPs and more advanced fibrogenic programming of Brahman FAPs. Mechanistically, NAB2 drives CFD expression, which in turn promotes adipogenesis. CFD expression in FAPs of young cattle before the onset of intramuscular adipogenesis was predictive of IMF contents in adulthood (R2 = 0.885, P \u3c 0.01). Similar adipogenic and fibrogenic FAPs were identified in humans and monkeys. In aged humans with metabolic syndrome and progressed Duchenne muscular dystrophy (DMD) patients, increased CFD expression was observed (P \u3c 0.05 and P \u3c 0.0001, respectively), which was positively correlated with adipogenic marker expression, including ADIPOQ (R2 = 0.303, P \u3c 0.01; and R2 = 0.348, P \u3c 0.01, respectively). The specificity of Postn/POSTN as a fibrogenic FAP marker was validated using a lineage-tracing mouse line. POSTN expression was elevated in Brahman FAPs (P \u3c 0.0001) and DMD patients (P \u3c 0.01) but not in aged humans. Strong interactions between vascular cells and FAPs were also identified.
Conclusions
Our study demonstrates the feasibility of beef cattle as a model for studying IMF and IMC. We illustrate the FAP programming during intramuscular adipogenesis and fibrogenesis and reveal the reliability of CFD as a predictor and biomarker of IMF accumulation in cattle and humans
Loss of \u3ci\u3eActa2\u3c/i\u3e in Cardiac Fibroblasts Does Not Prevent the Myofibroblast Differentiation or Affect the Cardiac Repair After Myocardial Infarction
In response to myocardial infarction (MI), quiescent cardiac fibroblasts differentiate into myofibroblasts mediating tissue repair. One of the most widely accepted markers of myofibroblast differentiation is the expression of Acta2 which encodes smooth muscle alpha-actin (SMαA) that is assembled into stress fibers. However, the requirement of Acta2/SMαA in the myofibroblast differentiation of cardiac fibroblasts and its role in post-MI cardiac repair remained unknown. To answer these questions, we generated a tamoxifen-inducible cardiac fibroblast-specific Acta2 knockout mouse line. Surprisingly, mice that lacked Acta2 in cardiac fibroblasts had a normal post-MI survival rate. Moreover, Acta2 deletion did not affect the function or histology of infarcted hearts. No difference was detected in the proliferation, migration, or contractility between WT and Acta2-null cardiac myofibroblasts. Acta2-null cardiac myofibroblasts had a normal total filamentous actin level and total actin level. Acta2 deletion caused a significant compensatory increase in the transcription level of non-Acta2 actin isoforms, especially Actg2 and Acta1. Moreover, in myofibroblasts, the transcription levels of cytoplasmic actin isoforms were significantly higher than those of muscle actin isoforms. In addition, we found that myocardin-related transcription factor-A is critical for myofibroblast differentiation but is not required for the compensatory effects of non-Acta2 isoforms. In conclusion, the Acta2 deletion does not prevent the myofibroblast differentiation of cardiac fibroblasts or affect the post-MI cardiac repair, and the increased expression and stress fiber formation of non-SMαA actin isoforms and the functional redundancy between actin isoforms are able to compensate for the loss of Acta2 in cardiac myofibroblasts
Progenitor Cell Isolation From Mouse Epididymal Adipose Tissue and Sequencing Library Construction
Here, we present a protocol to isolate progenitor cells from mouse epididymal visceral adipose tissue and construct bulk RNA and assay for transposase-accessible chromatin with sequencing (ATAC-seq) libraries. We describe steps for adipose tissue collection, cell isolation, and cell staining and sorting. We then detail procedures for both ATAC-seq and RNA sequencing library construction. This protocol can also be applied to other tissues and cell types directly or with minor modifications. For complete details on the use and execution of this protocol, please refer to Liu et al. (2023).1
*1 Liu, Q., Li, C., Deng, B., Gao, P., Wang, L., Li, Y., ... & Fu, X. (2023). Tcf21 marks visceral adipose mesenchymal progenitors and functions as a rate-limiting factor during visceral adipose tissue development. Cell reports, 42(3) 112166. https://doi.org/10.1016/j.celrep.2023.11216
Identification of efferocytosis-related subtypes in gliomas and elucidating their characteristics and clinical significance
Introduction: Gliomas, the most prevalent tumors of the central nervous system, are known for their aggressive nature and poor prognosis. The heterogeneity among gliomas leads to varying responses to the same treatments, even among similar glioma types. In our study, we efferocytosis-related subtypes and explored their characteristics in terms of immune landscape, intercellular communication, and metabolic processes, ultimately elucidating their potential clinical implications.Methods and Results: We first identified efferocytosis-related subtypes in Bulk RNA-seq using the NMF algorithm. We then preliminarily demonstrated the correlation of these subtypes with efferocytosis by examining enrichment scores of cell death pathways, macrophage infiltration, and the expression of immune ligands. Our analysis of single-cell RNA-seq data further supported the association of these subtypes with efferocytosis. Through enrichment analysis, we found that efferocytosis-related subtypes differ from other types of gliomas in terms of immune landscape, intercellular communication, and substance metabolism. Moreover, we found that the efferocytosis-related classification is a prognostic factor with robust predictive performance by calculating the AUC values. We also found that efferocytosis-related subtypes, when compared with other gliomas in drug sensitivity, survival, and TIDE scores, show a clear link to the effectiveness of chemotherapy, radiotherapy, and immunotherapy in glioma patients.Discussion: We identified efferocytosis-related subtypes in gliomas by analyzing the expression of 137 efferocytosis-associated genes, exploring their characteristics in immune landscape, intercellular communication, metabolic processes, and genomic variations. Moreover, we discovered that the classification of efferocytosis-related subtypes has a strong prognostic predictive power and holds potential significance in guiding clinical treatment
Global climate forcing of aerosols embodied in international trade
International trade separates regions consuming goods and services from regions where goods and related aerosol pollution are produced. Yet the role of trade in aerosol climate forcing attributed to different regions has never been quantified. Here, we contrast the direct radiative forcing of aerosols related to regions’ consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols, including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers such as Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences between consumption- and production-related radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions
Understanding the Effects of Both CD14-Mediated Innate Immunity and Device/Tissue Mechanical Mismatch in the Neuroinflammatory Response to Intracortical Microelectrodes
Intracortical microelectrodes record neuronal activity of individual neurons within the brain, which can be used to bridge communication between the biological system and computer hardware for both research and rehabilitation purposes. However, long-term consistent neural recordings are difficult to achieve, in large part due to the neuroinflammatory tissue response to the microelectrodes. Prior studies have identified many factors that may contribute to the neuroinflammatory response to intracortical microelectrodes. Unfortunately, each proposed mechanism for the prolonged neuroinflammatory response has been investigated independently, while it is clear that mechanisms can overlap and be difficult to isolate. Therefore, we aimed to determine whether the dual targeting of the innate immune response by inhibiting innate immunity pathways associated with cluster of differentiation 14 (CD14), and the mechanical mismatch could improve the neuroinflammatory response to intracortical microelectrodes. A thiol-ene probe that softens on contact with the physiological environment was used to reduce mechanical mismatch. The thiol-ene probe was both softer and larger in size than the uncoated silicon control probe. Cd14-/- mice were used to completely inhibit contribution of CD14 to the neuroinflammatory response. Contrary to the initial hypothesis, dual targeting worsened the neuroinflammatory response to intracortical probes. Therefore, probe material and CD14 deficiency were independently assessed for their effect on inflammation and neuronal density by implanting each microelectrode type in both wild-type control and Cd14-/- mice. Histology results show that 2 weeks after implantation, targeting CD14 results in higher neuronal density and decreased glial scar around the probe, whereas the thiol-ene probe results in more microglia/macrophage activation and greater blood–brain barrier (BBB) disruption around the probe. Chronic histology demonstrate no differences in the inflammatory response at 16 weeks. Over acute time points, results also suggest immunomodulatory approaches such as targeting CD14 can be utilized to decrease inflammation to intracortical microelectrodes. The results obtained in the current study highlight the importance of not only probe material, but probe size, in regard to neuroinflammation
Compaction Uniformity Evaluation of Subgrade in Highway Based on Principal Components Analysis and Back Propagation Neural Networks
This paper proposes a comprehensive method for the compaction uniformity evaluation of subgrade in highways based on the principle components analysis and BP neural network. A field test on resilient and Young’s moduli of subgrade during compaction is performed on Zun-Qin highway. The moduli representing the compaction uniformity are the key factors in the principal component analysis, and the components are used as input in Back Propagation (BP) neural networks. The degree of variation and synthesis score of moduli in three subgrade sections are discussed, and the results show that the comprehensive method has a good performance in evaluating the compaction uniformity of the subgrade. The insight from this study provides a novel evaluation method and incites a better understanding of the compaction uniformity of subgrade in highways
Cloning and sequencing of V-ATPase subunit d from mung bean and its function in passive proton transport
We have previously shown that vacuolar H+-ATPase subcomplex V_o from mung bean contains subunit d, however, its sequence and function were unknown. In the present study, we report the cloning and recombinant over expression of subunit d from mung bean in E. coli. To study the function of subunit d, two vacuolar H+-ATPase subcomplexes V_o from mung bean were purified-one containing subunits a and c(c’,c”) and the other containing subunits a, c(c’,c”) and d. After reconstitution of the purified V_o subcomplexes into liposomes, the proton translocation was studied. Our results show that the V_o subcomplex in the absence of subunit d is a passive proton channel, while the V_o subcomplex in the presence of the subunit d is not. Taken together, our data supports the conclusion that the subunit d of the plant vacuolar H+-ATPase from mung bean is positioned at the central stalk and involved in the proton translocation across the tonoplast membrane
Characteristics of the Soil and Vegetation along the Yulin–Jingbian Desert Expressway in China
Transportation infrastructure dramatically affects ecological processes. However, the environmental assessment process does not often consider how transportation impacts biodiversity, especially in ecologically fragile areas. The aim of this study was to assess the impacts of the Yulin⁻Jingbian expressway on vegetative diversity and to discuss the reason for the differences in soil-moisture distribution and vegetation diversity along the expressway. Samples were collected from 60 quadrats, along 6 transects. The α diversity indices and soil-moisture content calculated for each layer were used to represent habitat heterogeneity within a quadrat. A total of 49 species representing 39 genera and 16 families were recorded. Perennial herbs (42.9%) and annual herbs (36.7%) were the dominant life form. Species richness, diversity, and evenness indices of the vegetation varied with the distance between sampling points along the expressway. The vegetation with high diversity and evenness were near the expressway and areas with low diversity were farther from the expressway. The soil-moisture content in the 0⁻20 cm soil layer was a driving factor for the α diversity indices, and soil-moisture content below 20 cm played an inhibitory role on the α diversity indices. The greatest impact of the expressway on vegetation diversity was its effect on surface runoff and the distribution of plant root systems in the top layer of soil