82 research outputs found

    IMIDE-FUNCTIONALIZED CONJUGATED POLYMERS: SYNTHESIS, STRUCTURE-PROPERTY AND DEVICE STUDIES

    Get PDF
    Organic semiconductors are widely studied as potential active components for consumer electronics due largely to their easily tuned properties and the promise of lower-cost solution-based processing technology. Imide-functionalized organic small molecule compounds have been one of the more important and studied organic semiconductors. However, very few imide-functionalized conjugated polymers have been reported in the literature. The body of this dissertation focuses on the synthesis, structure-property and device studies of imide-functionalized conjugated polymers. Reasons for choosing arylene imides as polymer building blocks include: a) they impart low-lying LUMOs to polymers, allowing band-gap engineering through choice of comonomers with variable electron-donating ability; b) imide-nitrogens provide points to attach side chains to manipulate solubility and solid-state packing; c) they are easily prepared. Structure-property studies include electrochemical measurements, UV-Vis absorption spectroscopy, differential scanning calorimetry (DSC), x-ray diffraction, and in some cases evaluation as active components in field-effect transistors (OFETs) and photovoltaic devices (PVDs). The published method to synthesize 3,6-dibromo-pyromellitic bisimides (PMBI) was streamlined and poly(phenylene ethynylene)s (PPEs) with variable band gaps were prepared from them (Chapter 2). As noted in all the chapters, electrochemical and optical measurements reveal that the LUMO of the polymers is indeed dictated by the arylene imide, while the HOMO, and therefore the optical energy gap is controlled through varying the electron donor monomer. Intramolecular hydrogen bonding was employed for increasing backbone coplanarity and therefore the polymer could have higher conjugation. One of these polymers demonstrated the narrowest band gap (1.50 eV) for any published PPE. Chapter 3 describes the first published conjugated copolymers from naphthalene bisimides (NBI), here using thiophene-based comonomers as donor units. Polymers with high molecular weight and decent solubility were obtained by choosing appropriate side chains. The optical energy gaps could be tuned across the visible and into the near IR. Preliminary OFET studies revealed electron mobility as high as ~0.01 cm2/Vs. One low band gap polymer provided OFETs with electron mobility of ~0.04 cm2/Vs and hole mobility of ~0.003 cm2/Vs, which is also among the highest mobilities of ambipolar polymeric semiconductors. Using the same approach as in Chapter 3, phthalimide-based monomers were incorporated into polymer backbones for developing new high performance p-type polymer semiconductors for OFETs and PVDs (Chapter 4). Some analogues based on benzothiadiazole, PMBI, and thiophene imides as acceptors were prepared for comparison. Again, high molecular weight, soluble polymers with band gaps spanning the visible and into the near IR were obtained. OFETs from one of the polymers yielded hole mobility ~0.3 cm2/Vs under ambient atmosphere without post-processing thermal annealing, which places it squarely within the state-of-the-art for conjugated polymers. Due to the high mobility and low band gap, this polymer also leads to PVDs with moderately good power conversion efficiency (PCE: ~2%)

    Understanding charge transport in organic field effect transistors

    Get PDF
    The organic electronics research field has advanced tremendously in the last decades, having already led to field-effect mobilities able to compete with their inorganic counterparts. However, many fundamental aspects of this field remain still unclear and need to be clarified before its final blossoming, which would probably come with the complete understanding of the charge transport mechanism in organic materials. It is well-known that the performance of organic semiconductors is governed not only by their molecular structures but also by their intermolecular assembly in the solid state. Therefore, analyzing organic materials from both a molecular and supramolecular point of view is highly desirable. For this end, Raman spectroscopy is a rapid, non invasive technique able to gather information on molecular and supramolecular levels, thus being greatly useful in the organic electronics research field. Analyzing buried interfaces, such as the semiconductor-dielectric interface in organic field effect transistors (OFETs) is fundamental, since the largest contribution to charge transport occurs within the first few nanometers of the semiconductor near the dielectric interface. Surface Enhanced Raman Spectroscopy (SERS) appears as an easy and straightforward technique to carry out this task and to provide useful information on molecular orientation at the device active layer. In this communication, some examples will be presented in which several spectroscopic techniques, conventional Raman and SERS, supported by DFT quantum chemical calculations have been used to shed light on the mechanism of charge transport in OFETs.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Fused Quinoidal Oligothiophenes Imides with High Electrical Conductivity

    Get PDF
    Organic diradicals are molecules containing two unpaired electrons, which are usually highly reactive.1-2 Although these organic diradicals present a wide range of potential applications, their air stability still remains as a major obstacle.3 In order to overcome this, new organic diradicals based on quinoidal oligothiophenes-derivatives (QOT) have been synthesized, i.e. BTICN, ISOCN and QTICN (see Figure 1). These new molecules present high stability and electrical conductivity, which have been achieved by employing imide-bridged fused molecular frameworks. The combination of strong electron-withdrawing imide with tetracyano groups in the conjugated skeletons also enabled extremely deeply aligned LUMO levels and large diradical character assisted by cross-conjugation.4 Here we use different experimental techniques and DFT calculations to provide new insights into the electron conduction mechanism of QOT diradicaloids, in order to demonstrate the great potential of fused quinoidal oligothiophene imides in developing stable organic diradicals and high-performance doping-free n-type conductive materials.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Analyzing thin film morphology by Resonance Raman spectroscopy

    Get PDF
    Polymeric organic thin film transistors (OFETs) and all-polymer bulk heterojunction solar cells (all-PCS), which are composed of a polymer donor and a polymer acceptor, have attracted considerable attention in the last years. The interest of these polymeric materials present various advantages versus small molecular counterparts, including strong light absorption, excellent mechanical flexibility and durability, and great potential in printing applications due to their great processability. In OFETs and bulk heterojunction solar cells, the morphology and crystallinity control of the neat polymer or blended donor-acceptor polymer films is essential in order to improve device performance. In this communication, we present a Resonance Raman spectroscopy study directed to disentangle the film morphology of a series of all-acceptor and donor acceptor polymers for OFETs and all-PCS applications.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Donor-acceptor polymers for applications in organic electronics and photovoltaics

    Get PDF
    We have synthesized a new series of high-mobility polymeric semiconductors with good processability and excellent environmental stability for organic electronics and photovoltaics. Using these materials, solar cells were fabricated with power conversion efficiencies of up to 8.7% and remarkable fill factors of 76-80%.MINECO, Junta de AndalucĂ­

    Organic Materials: The Effect of Subtle Modifications on Device Performance

    Get PDF
    In the search of new high-mobility polymeric semiconductors with good processability and excellent environmental stability, diverse synthetic strategies have been approached. One of the most widely used consists in the alternation of donor and acceptor moieties in the conjugated skeleton, which allows fine tuning of the polymer frontier molecular orbitals. For organic field effect transistors (OFETs) applications, low-lying HOMOs are essential to resist air oxidation and thus increase device stability. However, if the HOMO energy is too low, the resulting barrier to hole injection may compromise the transistor performance. Thus, a delicate balance between these two effects is needed. Furthermore, high performance solution-processable materials require the correct selection and positioning of the specific solubilizing substituents in order to achieve proper HOMO and LUMO energy levels, planar molecular conformations, close intermolecular π-π stacking, and proper thin film crystallinity. Following these two combined strategies, diverse polymeric materials with great performances in both OFETs and solar cells, and having remarkable air stability, have been synthesized and characterized. , This contribution will analyze how small modifications in their molecular structures can have a great impact on the device performance.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Spectroscopic techniques as tools to analyze charge transport processes in organic field effect transistors

    Get PDF
    The organic electronics research field has advanced tremendously in the last decades, already rendering semiconductors able to compete with their inorganic counterparts. However, the final blossoming of this field would probably come with the complete understanding of the charge transport mechanism in organic materials. For this end, spectroscopies techniques have been proven to be of great interest in the elucidation of the different processes taking place in electronic devices. These techniques, and in particular Raman spectroscopy is a rapid, noninvasive technique able to gather information on molecular and supramolecular levels, thus being really useful for this purpose. In this talk, some examples from our research group will be presented in which several spectroscopic techniques, supported by DFT quantum chemical calculations have been used to shed light on the charge transport mechanisms in organic field effect transistors (OFETs).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Overcoming Coulomb Interaction Improves Free-Charge Generation and Thermoelectric Properties for n-Doped Conjugated Polymers

    Get PDF
    Molecular doping of organic semiconductors creates Coulombically bound charge and counterion pairs through a charge-transfer process. However, their Coulomb interactions and strategies to mitigate their effects have been rarely addressed. Here, we report that the number of free charges and thermoelectric properties are greatly enhanced by overcoming the Coulomb interaction in an n-doped conjugated polymer. Poly(2,2'-bithiazolothienyl-4,4',10,10'-tetracarboxydiimide) (PDTzTI) and the benchmark N2200 are n-doped by tetrakis (dimethylamino) ethylene (TDAE) for thermoelectrics. Doped PDTzTI exhibits similar to 10 times higher free-charge density and 500 times higher conductivity than doped N2200, leading to a power factor of 7.6 mu W m(-1) K-2 and ZT of 0.01 at room temperature. Compared to N2200, PDTzTI features a better molecular ordering and two-dimensional charge delocalization, which help overcome the Coulomb interaction in the doped state. Consequently, free charges are more easily generated from charge-counterion pairs. This work provides a strategy for improving n-type thermoelectrics by tackling electrostatic interactions

    The AI-2/luxS Quorum Sensing System Affects the Growth Characteristics, Biofilm Formation, and Virulence of Haemophilus parasuis

    Get PDF
    Haemophilus parasuis (H. parasuis) is a kind of opportunistic pathogen of the upper respiratory tract of piglets. Under certain circumstances, virulent strains can breach the mucosal barrier and enter the bloodstream, causing severe Glässer's disease. Many virulence factors are found to be related to the pathogenicity of H. parasuis strain, but the pathogenic mechanism remains unclear. LuxS/AI-2, as a kind of very important quorum sensing system, affects the growth characteristics, biofilm formation, antibiotic production, virulence, and metabolism of different strains. In order to investigate the effect of luxS/AI-2 quorum sensing system on the virulence of H. parasuis, a deletion mutant strain (ΔluxS) and complemented strain (C-luxS) were constructed and characterized. The results showed that the luxS gene participated in regulating and controlling stress resistance, biofilm formation and virulence. Compared with wild-type strain, ΔluxS strain decreased the production of AI-2 molecules and the tolerance toward oxidative stress and heat shock, and it reduced the abilities of autoagglutination, hemagglutination, and adherence, whereas it increased the abilities to form biofilm in vitro. In vivo experiments showed that ΔluxS strain attenuated its virulence about 10-folds and significantly decreased its tissue burden of bacteria in mice, compared with the wild-type strain. Taken together, the luxS/AI-2 quorum sensing system in H. parasuis not only plays an important role in growth and biofilm formation, but also affects the pathogenicity of H. parasuis
    • …
    corecore