154 research outputs found

    Structured Memetic Automation for Online Human-like Social Behavior Learning

    Get PDF
    Meme automaton is an adaptive entity that autonomously acquires an increasing level of capability and intelligence through embedded memes evolving independently or via social interactions. This paper begins a study on memetic multiagent system (MeMAS) toward human-like social agents with memetic automaton. We introduce a potentially rich meme-inspired design and operational model, with Darwin's theory of natural selection and Dawkins' notion of a meme as the principal driving forces behind interactions among agents, whereby memes form the fundamental building blocks of the agents' mind universe. To improve the efficiency and scalability of MeMAS, we propose memetic agents with structured memes in this paper. Particularly, we focus on meme selection design where the commonly used elitist strategy is further improved by assimilating the notion of like-attracts-like in the human learning. We conduct experimental study on multiple problem domains and show the performance of the proposed MeMAS on human-like social behavior

    Cryogenic hybrid magnonic circuits based on spalled YIG thin films

    Full text link
    Yttrium iron garnet (YIG) magnonics has sparked extensive research interests toward harnessing magnons (quasiparticles of collective spin excitation) for signal processing. In particular, YIG magnonics-based hybrid systems exhibit great potentials for quantum information science because of their wide frequency tunability and excellent compatibility with other platforms. However, the broad application and scalability of thin-film YIG devices in the quantum regime has been severely limited due to the substantial microwave loss in the host substrate for YIG, gadolinium gallium garnet (GGG), at cryogenic temperatures. In this study, we demonstrate that substrate-free YIG thin films can be obtained by introducing the controlled spalling and layer transfer technology to YIG/GGG samples. Our approach is validated by measuring a hybrid device consisting of a superconducting resonator and a spalled YIG film, which gives a strong coupling feature indicating the good coherence of our system. This advancement paves the way for enhanced on-chip integration and the scalability of YIG-based quantum devices.Comment: 10 pages, 8 figure

    Novel Parameterized Utility Function on Dual Hesitant Fuzzy Rough Sets and Its Application in Pattern Recognition

    Get PDF
    Based on comparative studies on correlation coefficient theory and utility theory, a series of rules that utility functions on dual hesitant fuzzy rough sets (DHFRSs) should satisfy, and a kind of novel utility function on DHFRSs are proposed. The characteristic of the introduced utility function is a parameter, which is determined by decision-makers according to their experiences. By using the proposed utility function on DHFRSs, a novel dual hesitant fuzzy rough pattern recognition method is also proposed. Furthermore, this study also points out that the classical dual tool is suitable to cope with dynamic data in exploratory data analysis situations, while the newly proposed one is suitable to cope with static data in confirmatory data analysis situations. Finally, a medical diagnosis and a traffic engineering example are introduced to reveal the effectiveness of the newly proposed utility functions on DHFRSs. Document type: Articl

    Resonant magneto-optic Kerr effect in the magnetic topological insulator Cr:(Sbx_x,Bi1x_{1-x})2_2Te3_3

    Full text link
    We report measurements of the polar Kerr effect, proportional to the out-of-plane component of the magnetization, in thin films of the magnetically doped topological insulator (Cr0.12Bi0.26Sb0.62)2Te3(\text{Cr}_{0.12}\text{Bi}_{0.26}\text{Sb}_{0.62})_2\text{Te}_3. Measurements of the complex Kerr angle, ΘK\Theta_K, were performed as a function of photon energy in the range 0.8 eV<ω<3.0 eV0.8\text{ eV}<\hbar\omega<3.0\text{ eV}. We observed a peak in the real part of ΘK(ω)\Theta_K(\omega) and zero crossing in the imaginary part that we attribute to resonant interaction with a spin-orbit avoided crossing located \approx 1.6 eV above the Fermi energy. The resonant enhancement allows measurement of the temperature and magnetic field dependence of ΘK\Theta_K in the ultrathin film limit, d2d\geq2 quintuple layers. We find a sharp transition to zero remanent magnetization at 6 K for d<8d<8~QL, consistent with theories of the dependence of impurity spin interactions on film thickness and their location relative to topological insulator surfaces.Comment: 6 pages, 5 figure

    Metal-to-Insulator Switching in Quantum Anomalous Hall States

    Full text link
    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator (TI) films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the 6 quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is realized through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. In addition, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications

    Hemp seeds attenuate loperamide-induced constipation in mice

    Get PDF
    Constipation is a common gastrointestinal disease that seriously affects human physical and mental health. Studies have reported that hemp seeds can improve constipation, however the specific mechanism is still unclear. This study investigates that hemp seed (HS) and its water-ethanol extract (HSE) attenuates loperamide-induced constipation in mice. The research results show that: the fecal water content and small intestinal transit rate of mice in the hemp seed group and hemp seed hydroalcoholic extract group were significantly increased compared with MC group, and the first red feces defecation time was significantly shortened; HS and HSE significantly influence serum levels of Gastrin (Gas), motilin (MTL), substance P (SP), and endothelin (ET), potentially mediating their effects on gastrointestinal motility. HS and HSE can improve colon inflammation in constipated mice with H&amp;E staining. Compared with the model of constipation group, the content of short-chain fatty acids in the HS group and HSE group increased significantly. Gut microbiome studies have shown that the structure and abundance of intestinal flora are altered. HS and HSE changed the abundance of Odoribacter, Bacteroide, Lactobacillus and Prevotella. Together, these results suggest that HS have the potential to stimulate the proliferation of beneficial gut microbes and promote intestinal motility, thereby improving gut health and relieving symptoms of constipation
    corecore