42 research outputs found

    Analysis of Coronavirus Temperature-Sensitive Mutants Reveals an Interplay between the Macrodomain and Papain-Like Protease Impacting Replication and Pathogenesis

    Get PDF
    Analysis of temperature-sensitive (ts) mutant viruses is a classic method allowing researchers to identify genetic loci involved in viral replication and pathogenesis. Here, we report genetic analysis of a ts strain of mouse hepatitis virus (MHV), tsNC11, focusing on the role of mutations in the macrodomain (MAC) and the papain-like protease 2 (PLP2) domain of nonstructural protein 3 (nsp3), a component of the viral replication complex. Using MHV reverse genetics, we generated a series of mutant viruses to define the contributions of macrodomain- and PLP2-specific mutations to the ts phenotype. Viral replication kinetics and efficiency-of-plating analysis performed at permissive and nonpermissive temperatures revealed that changes in the macrodomain alone were both necessary and sufficient for the ts phenotype. Interestingly, mutations in the PLP2 domain were not responsible for the temperature sensitivity but did reduce the frequency of reversion of macrodomain mutants. Coimmunoprecipitation studies are consistent with an interaction between the macrodomain and PLP2. Expression studies of the macrodomain-PLP2 portion of nsp3 indicate that the ts mutations enhance proteasome-mediated degradation of the protein. Furthermore, we found that during virus infection, the replicase proteins containing the MAC and PLP2 mutations were more rapidly degraded at the nonpermissive temperature than were the wild-type proteins. Importantly, we show that the macrodomain and PLP2 mutant viruses trigger production of type I interferon in vitro and are attenuated in mice, further highlighting the importance of the macrodomain-PLP2 interplay in viral pathogenesis. IMPORTANCE Coronaviruses (CoVs) are emerging human and veterinary pathogens with pandemic potential. Despite the established and predicted threat these viruses pose to human health, there are currently no approved countermeasures to control infections with these viruses in humans. Viral macrodomains, enzymes that remove posttranslational ADP-ribosylation of proteins, and viral multifunctional papain-like proteases, enzymes that cleave polyproteins and remove polyubiquitin chains via deubiquitinating activity, are two important virulence factors. Here, we reveal an unanticipated interplay between the macrodomain and the PLP2 domain that is important for replication and antagonizing the host innate immune response. Targeting the interaction of these enzymes may provide new therapeutic opportunities to treat CoV disease

    Characterization of nonstructural protein 3 of a neurovirulent Japanese encephalitis virus strain isolated from a pig

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Japanese encephalitis virus (JEV), as a re-emerging virus that causes 10,000-15,000 human deaths from encephalitis in the world each year, has had a significant impact on public health. Pigs are the natural reservoirs of JEV and play an important role in the amplification, dispersal and epidemiology of JEV. The nonstructural protein 3 (NS3) of JEV possesses enzymatic activities of serine protease, helicase and nucleoside 5'-triphosphatase, and plays important roles in viral replication and pathogenesis.</p> <p>Results</p> <p>We characterized the NS3 protein of a neurovirulent strain of JEV (SH-JEV01) isolated from a field-infected pig. The NS3 gene of the JEV SH-JEV01 strain is 1857 bp in length and encodes protein of approximately 72 kDa with 99% amino acid sequence identity to that of the representative immunotype strain JaGAr 01. The NS3 protein was detectable 12 h post-infection in a mouse neuroblastoma cell line, Neuro-2a, and was distributed in the cytoplasm of cells infected with the SH-JEV01 strain of JEV. In the brain of mice infected with the SH-JEV01 strain of JEV, NS3 was detected in the cytoplasm of neuronal cells, including pyramidal neurons of the cerebrum, granule cells, small cells and Purkinje cells of the cerebellum.</p> <p>Conclusions</p> <p>The NS3 protein of a neurovirulent strain of JEV isolated from a pig was characterized. It is an approximately 72 kDa protein and distributed in the cytoplasm of infected cells. The Purkinje cell of the cerebellum is one of the target cells of JEV infection. Our data should provide some basic information for the study of the role of NS3 in the pathogenesis of JEV and the immune response.</p

    The Meq oncoprotein of Marek's disease virus interacts with p53 and inhibits its transcriptional and apoptotic activities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Marek's disease virus (MDV) is an oncogenic herpesvirus, which causes malignant lymphoma in chickens. The Meq protein of MDV, which is expressed abundantly in MDV-infected cells and in Marek's disease (MD) tumor cells, functions as a transcriptional activator and has been proposed to play an important role in oncogenic transformation. Preliminary studies demonstrated that Meq is able to bind p53 <it>in vitro</it>, as demonstrated using a protein-binding assay. This observation prompted us to examine whether the interaction between Meq and p53 occurs in cells, and to investigate the biological significance of this interaction.</p> <p>Results</p> <p>We confirmed first that Meq interacted directly with p53 using a yeast two-hybrid assay and an immunoprecipitation assay, and we investigated the biological significance of this interaction subsequently. Exogenous expression of Meq resulted in the inhibition of p53-mediated transcriptional activity and apoptosis, as analyzed using a p53 luciferase reporter assay and a TUNEL assay. The inhibitory effect of Meq on transcriptional activity mediated by p53 was dependent on the physical interaction between these two proteins, because a Meq deletion mutant that lacked the p53-binding region lost the ability to inhibit p53-mediated transcriptional activity and apoptosis. The Meq variants L-Meq and S-Meq, but not VS-Meq and ∆Meq, which were expressed in MD tumor cells and MDV-infected cells, exerted an inhibitory effect on p53 transcriptional activity. In addition, ∆Meq was found to act as a negative regulator of Meq.</p> <p>Conclusions</p> <p>The Meq oncoprotein interacts directly with p53 and inhibits p53-mediated transcriptional activity and apoptosis. These findings provide valuable insight into the molecular basis for the function of Meq in MDV oncogenesis.</p

    A chimeric virus-mouse model system for evaluating the function and inhibition of papain-like proteases of emerging coronaviruses

    Get PDF
    To combat emerging coronaviruses, developing safe and efficient platforms to evaluate viral protease activities and the efficacy of protease inhibitors is a high priority. Here, we exploit a biosafety level 2 (BSL-2) chimeric Sindbis virus system to evaluate protease activities and the efficacy of inhibitors directed against the papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus (SARS-CoV), a biosafety level 3 (BSL-3) pathogen. We engineered Sindbis virus to coexpress PLpro and a substrate, murine interferon-stimulated gene 15 (ISG15), and found that PLpro mediates removal of ISG15 (deISGylation) from cellular proteins. Mutation of the catalytic cysteine residue of PLpro or addition of a PLpro inhibitor blocked deISGylation in virus-infected cells. Thus, deISGylation is a marker of PLpro activity. Infection of alpha/beta interferon receptor knockout (IFNAR−/−) mice with these chimeric viruses revealed that PLpro deISGylation activity removed ISG15-mediated protection during viral infection. Importantly, administration of a PLpro inhibitor protected these mice from lethal infection, demonstrating the efficacy of a coronavirus protease inhibitor in a mouse model. However, this PLpro inhibitor was not sufficient to protect the mice from lethal infection with SARS-CoV MA15, suggesting that further optimization of the delivery and stability of PLpro inhibitors is needed. We extended the chimeric-virus platform to evaluate the papain-like protease/deISGylating activity of Middle East respiratory syndrome coronavirus (MERS-CoV) to provide a small-animal model to evaluate PLpro inhibitors of this recently emerged pathogen. This platform has the potential to be universally adaptable to other viral and cellular enzymes that have deISGylating activities

    Identification and isolation of Genotype-I Japanese Encephalitis virus from encephalitis patients

    Get PDF
    Historically, Japanese Encephalitis virus (JEV) genotype III (GIII) has been responsible for human diseases. In recent years, JEV genotype I (GI) has been isolated from mosquitoes collected in numerous countries, but has not been isolated from patients with encephalitis. In this study, we report recovery of JEV GI live virus and identification of JEV GI RNA from cerebrospinal fluid (CSF) of encephalitis patients in JE endemic areas of China. Whole-genome sequencing and molecular phylogenetic analysis of the JEV isolate from the CSF samples was performed. The isolate in this study is highly similar to other JEV GI strains which isolated from mosquitoes at both the nucleotide and deduced amino acid levels. Phylogenetic analysis based on the genomic sequence showed that the isolate belongs to JEV GI, which is consistent with the phylogenetic analysis based on the pre-membrane (PrM) and Glycoprotein genes. As a conclusion, this is the first time to isolate JEV GI strain from CSF samples of encephalitis patients, so continuous survey and evaluate the infectivity and pathogenecity of JEV GI strains are necessary, especially for the JEV GI strains from encephalitis patients. With respect to the latter, because all current JEV vaccines (live and inactivated are derived from JEV GIII strains, future studies should be aimed at investigating and monitoring cross-protection of the human JEV GI isolates against widely used JEV vaccines

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B1013 GB\rm \sim 10^{13}~G, D6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443
    corecore