157 research outputs found

    Joint radar-communication waveform designs using signals from multiplexed users

    Get PDF
    Joint radar-communication designs are exploited in applications where radar and communications systems share the same frequency band or when both radar sensing and information communication functions are required in the same system. Finding a waveform that is suitable for both radar and communication is challenging due to the difference between radar and communication operations. In this paper, we propose a new method of designing dual-functional waveforms for both radar and communication using signals from multiplexed communications users. Specifically, signals from different communications users multiplexed in the time, code or frequency domains across different data bits are linearly combined to generate an overall radar waveform. Three typical radar waveforms are considered. The coefficients of the linear combination are optimized to minimize the mean squared error with or without a constraint on the signal-to-noise ratio (SNR) for the communications signals. Numerical results show that the optimization without SNR constraint can almost perfectly approximate the radar waveform in all the cases considered, giving good dual-functional waveforms for both radar and communication. Also, among different multiplexing techniques, time division multiple access is the best option to approximate the radar waveform, followed by code division multiple access and orthogonal frequency division multiple access

    Time allocation for integrated bi-static radar and communication systems

    Get PDF
    Integrated radar and communications systems are increasingly important for applications requiring both sensing and information exchange. In this letter, we study the time allocation problem for an integrated bi-static radar and communications system. A closed-form expression for the achievable rate considering radar detection accuracy is derived analytically for this problem and optimized. Numerical results reveal that the optimum time allocation is characterized by the signal-to-noise ratio and the prior probability of target

    Road detection via a dual-task network based on cross-layer graph fusion modules

    Full text link
    Road detection based on remote sensing images is of great significance to intelligent traffic management. The performances of the mainstream road detection methods are mainly determined by their extracted features, whose richness and robustness can be enhanced by fusing features of different types and cross-layer connections. However, the features in the existing mainstream model frameworks are often similar in the same layer by the single-task training, and the traditional cross-layer fusion ways are too simple to obtain an efficient effect, so more complex fusion ways besides concatenation and addition deserve to be explored. Aiming at the above defects, we propose a dual-task network (DTnet) for road detection and cross-layer graph fusion module (CGM): the DTnet consists of two parallel branches for road area and edge detection, respectively, while enhancing the feature diversity by fusing features between two branches through our designed feature bridge modules (FBM). The CGM improves the cross-layer fusion effect by a complex feature stream graph, and four graph patterns are evaluated. Experimental results on three public datasets demonstrate that our method effectively improves the final detection result

    Joint bi-static radar and communications designs for intelligent transportation

    Get PDF
    The cooperation of radar and communications becomes important in vehicular environments due to the demand for radar-assisted communications or communications-assisted radar. In this paper, the tradeoff between bi-static radar and communications in a joint radar-communications setting is studied. We propose three schemes by using time division, superposition or their mixture. For each scheme, three optimization problems are formulated to maximize either the probability of detection for radar subject to a minimum communications rate, the communications rate subject to a minimum probability of detection for radar, or a combined measure of tradeoff. Specifically, given a fixed amount of total time or power for both communications and radar, the optimal power allocation and/or time allocation between radar and communications are derived. Numerical results show that the superposition scheme outperforms the time division scheme and the mixture scheme with considerable performance gains. They also show that the surveillance channel in radar and the communications channel are more important than the direct channel in radar

    Integrated radar-communication designs with channel estimation

    Get PDF

    Evolution of the Statistical Distribution in a Topological Defect Network

    Get PDF
    The complex networks of numerous topological defects in hexagonal manganites are highly relevant to vastly different phenomena from the birth of our cosmos to superfluidity transition. The topological defects in hexagonal manganites form two types of domain networks: type-I without and type-II with electric self-poling. A combined phase-field simulations and experimental study shows that the frequencies of domains with N-sides, i.e. of N-gons, in a type-I network are fitted by a lognormal distribution, whereas those in type-II display a scale-free power-law distribution with exponent ~ 2. A preferential attachment process that N-gons with a larger N have higher probability of coalescence is responsible for the emergence of the scale-free networks. Since the domain networks can be observed, analyzed, and manipulated at room temperature, hexagonal manganites provide a unique opportunity to explore how the statistical distribution of a topological defect network evolves with an external electric field

    Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles

    Get PDF
    A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs) with Spirulina polysaccharides (SPS) has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50%) inhibitory concentration value of 7.94 μM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G1 cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers
    • …
    corecore