62 research outputs found

    Real-time monitoring for road-base quality with the aid of buried piezoelectric sensors

    Get PDF
    The road-base usually deteriorate during service time due to factors such as cyclical traffic loads and road-base fouling. Currently the monitoring method for road-base quality is quite limited. This paper proposes a real-time Monitoring method for Road-Base Quality (MRBQ) based on a soil dynamic model and piezoelectric sensors buried in road-base. The soil dynamic model was extended with a piezoelectric equation to calculate the voltage in the road-base generated by a moving traffic load. Then, a model test was conducted to measure the output voltage of the piezoelectric sensors buried in the road-base. Finally, the road-base modulus was back-calculated through the soil dynamic model with the measured voltage. The back-calculated modulus was compared with the modulus measured by resonance column test (RCT) to validate this method. The unique relationship between the peak voltage and the road-base modulus at various depths was identified for different traffic load amplitudes and speeds, and the feasibility and accuracy of the MRBQ was demonstrated. This study reveals that the sensitivity of the piezoelectric sensors can reach 2 V/MPa, and the error to measure the road-base modulus is less than 20%. The proposed MRBQ demonstrates a good application potential in health monitoring of transportation facilities

    Physical and mechanical behaviors of compacted soils under hydraulic loading of wetting–drying cycles

    Get PDF
    Exposed geo−infrastructures filled with compacted soils experience cyclic wetting–drying effects due to environment and underground water fluctuations. Soil physical and mechanical behaviors are prone to deterioration to a great extent, e.g., swelling, collapse, or even slope failure, resulting in huge losses to human life, safety, and engineering construction. In this paper, hydraulic loading tests of wetting–drying cycles were carried out on compacted fine soil via a one−dimensional pressure plate apparatus equipped with bender elements. The influences of wetting–drying paths on the soil characteristics of moisture content, void ratio and shear modulus were obtained and analyzed. Results showed that cyclic wetting–drying effects weakened the soil’s water retention capacity. It was observed that it was harder for pore water to approach saturation at a lower matric suction level and to be expelled at a higher matric suction level. Typical swelling and shrinkage deformations occurred during the hydraulic loading processes, and volume expansion was generated after the drying–wetting cycles at a given value of matric suction, which deteriorated the densely compacted soils to a relatively looser state. Then, a unified soil–water characteristic surface was proposed to describe the unique relationships of moisture content, void ratio, and matric suction. Moreover, the small−strain shear modulus of the soil, in terms of shear wave velocity, was reduced by 32.2–35.5% and 13.8–25.8% at the same degree of saturation during the first and second wetting paths, respectively. Therefore, the volume expansion and modulus degradation resulting from the wetting–drying cycles should attract particular attention to avoid further distresses in the practical engineering

    Cancer-associated fibroblast infiltration in osteosarcoma: the discrepancy in subtypes pathways and immunosuppression

    Get PDF
    Introduction: Osteosarcoma (OS), the primary malignant bone tumor, has a low survival rate for recurrent patients. Latest reports indicated that cancer-associated fibroblasts (CAFs) were the main component of tumor microenvironment, and would generate a variable role in the progression of tumors. However, the role of CAFs is still few known in osteosarcoma.Methods: The processed RNA-seq data and the corresponding clinical and molecular information were retrieved from the Cancer Genome Atlas Program (TCGA) database and processed data of tumor tissue was obtained from Gene Expression Omnibus (GEO) database. Xcell method was used in data processing, and Gene set variation analysis (GSVA) was used to calculates enrichment scores. Nomogram was constructed to evaluate prognostic power of the predictive model. And the construction of risk scores and assessment of prognostic predictive were based on the LASSO model.Results: This study classified Cancer Genome Atlas (TCGA) cohort into high and low CAFs infiltrate phenotype with different CAFs infiltration enrichment scores. Then TOP 9 genes were screened as prognostic signatures among 2,488 differentially expressed genes between the two groups. Key prognostic molecules were CGREF1, CORT and RHBDL2 and the risk score formula is: Risk-score = CGREF1*0.004 + CORT*0.004 + RHBDL2*0.002. The signatures were validated to be independent prognostic factors to predict tumor prognosis with single-factor COX and multi-factor COX regression analyses and Norton chart. The risk score expression of risk score model genes could predict the drug resistance, and significant differences could be found between the high and low scoring groups for 17-AAG, AZD6244, PD-0325901 and Sorafenib.Discussion: To sum up, this article validated the prediction role of CAF infiltration in the prognosis of OS, which might shed light on the treatment of OS

    Accelerating O-redox kinetics with carbon nanotubes for stable lithium-rich cathodes

    Get PDF
    Lithium-rich cathodes (LRCs) show great potential to improve the energy density of commercial lithium-ion batteries owing to their cationic and anionic redox characteristics. Herein, a complete conductive network using carbon nanotubes (CNTs) additives to improve the poor kinetics of LRCs is fabricated. Ex situ X-ray photoelectron spectroscopy first demonstrates that the slope at a low potential and the following long platform can be assigned to the transition metal and oxygen redox, respectively. The combination of galvanostatic intermittent titration technique and electrochemical impedance spectroscopy further reveal that a battery with CNTs exhibited accelerated kinetics, especially for the O-redox process. Consequently, LRCs with CNTs exhibit a much better rate and cycling performance (approximate to 89% capacity retention at 2 C for over 200 cycles) than the Super P case. Eventually, TEM results imply that the improved electrochemical performance of the CNTs case also benefits from its more stable bulk and surface structures. Such a facile conductive additive modification strategy also provides a universal approach for the enhancement of the electron diffusion properties of other electrode materials.Web of Science67art. no. 220044

    Characteristics of leaching agents for heavy metal extraction and safe utilisation of pig farm biogas residues

    No full text
    The continuous development of biogas engineering in recent years has been accompanied by an increasing number of biogas-residue types in the environment. The existence of various heavy metal elements in biogas residues, particularly excessive amounts of zinc and copper in pig farm biogas residues, hinders their safe utilisation. Several studies have focused on an effective composition for biogas residues or on their effects on soil and plants. However, few investigations regarding the removal of harmful substances from biogas residues have been conducted. The characteristics of heavy metals leached from pig farm biogas residues using eight types of leaching agents were analysed in this study. It is expected that, based on this study, different uses for biogas residues can be developed under the premise of security. The results showed that the most suitable extractant of heavy metals from pig farm biogas residues was EDTA2Na. The leaching rates increased over time. The leaching rates of copper and zinc after 2 h were 21.91% and 48.66%, respectively. After being leached for 2 h by EDTA-2Na, the concentration of zinc met the requirements for moderate alkaline soil, according to the Control Limits against Harmful Substances in Composts for Agricultural Use (DB44/T 361-2006) standard

    Moist Static Energy and Secondary Circulation Evolution Characteristics during the Rapid Intensification of Super Typhoon Yutu (2007)

    No full text
    A high-resolution Weather Research and Forecasting (WRF) model is used to simulate inner-core thermodynamic (such as moist static energy) and dynamic secondary circulation structure evolutions associated with the rapid intensification (RI) of Super Typhoon Yutu (2007). The results show that the column-integrated moist static energy (MSE) and the secondary circulation strength are significantly correlated to the typhoon intensity change. A rapid increase of the MSE during the RI period is primarily attributed to inner core temperature increase, due to enhanced subsidence within the eye and strengthened convective heating along the eyewall. The column-integrated MSE budget analysis shows that its rapid increase during the RI is mainly caused by surface latent heat flux. A further diagnosis of the Sawyer–Eliassen equation shows that the rapid strengthening of the secondary circulation during RI results from both the radially expanding positive diabatic heating over the eyewall and the occurrence of a second heating center outside the eyewall. While the radially expanding eyewall heating contributes about 70% of the secondary circulation change, the outer heating contributes about 30%

    Ethnobotanical study on ritual plants used by Hani people in Yunnan, China

    No full text
    Abstract Background The Hani people, who reside in Yuanyang County, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, rely on rice terrace farming as their primary livelihood. They utilize plants in various traditional ritual practices. The Hani people have categorized the value of plants based on their natural attributes and have refined the ways of using different plants in specific rituals through practical observations and experiences derived from their agricultural culture. Although the plants used in these rituals hold significant cultural value, they have yet to be studied from the perspective of ethnobotany. This study aims to approach the ritual plants using ethnobotanical methods. Methods Ethnobotanical fieldwork was conducted in 10 villages in Yuanyang County between 2021 and 2023. Data were collected from the local Hani people through semi-structured interviews and participatory observations and 41 informants were interviewed during the field investigations. The frequency of citation (FC) and relative frequency of citation (RFC) were utilized to evaluate the relative importance of ritual plants among the local communities. Results A total of 36 plant species, belonging to 18 families and 34 genera, were recorded as being used in 11 ritual practices by the Hani people. Rosaceae, Poaceae, and Fabaceae were found to have the highest number of species. Most of the ritual plants used by the Hani people were collected from the wild. FC and RFC analysis showed that the preferred plants for Hani rituals were Rhus chinensis Mill, Oryza sativa L., Phyllostachys sulphurea (Carr.) A. et C. Riv. and Musa basjoo Siebold & Zucc. ex Iinuma. The 11 rituals are all centered around the performance of people, crops and livestock. The Hani people use plants in different rituals mainly based on their biological attributes. Conclusions Many rituals of the Hani people are closely related to their production and livelihood, and the plants used in these rituals are deeply rooted in Hani’s traditional ecological knowledge and beliefs. The Hani people’s reverence for nature, respect for life, gratitude towards ancestors, and seeking blessings and disaster prevention for their families, crops, and livestock are all reflected in these rituals and their utilization of ritual plants. The Hani people showcase their agricultural culture in the Honghe Hani Rice Terraces through plant-based ritual performances. Studying ritual plants in the core area of the Hani Rice Terraces is of great significance for protecting the Hani Terrace farming culture. In the future, it is essential to pay more attention to the role of traditional knowledge in biodiversity conservation
    corecore