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Introduction: Osteosarcoma (OS), the primary malignant bone tumor, has a low
survival rate for recurrent patients. Latest reports indicated that cancer-associated
fibroblasts (CAFs) were the main component of tumor microenvironment, and
would generate a variable role in the progression of tumors. However, the role of
CAFs is still few known in osteosarcoma.

Methods: The processed RNA-seq data and the corresponding clinical and
molecular information were retrieved from the Cancer Genome Atlas Program
(TCGA) database and processed data of tumor tissue was obtained from Gene
Expression Omnibus (GEO) database. Xcell method was used in data processing,
and Gene set variation analysis (GSVA) was used to calculates enrichment scores.
Nomogram was constructed to evaluate prognostic power of the predictive
model. And the construction of risk scores and assessment of prognostic
predictive were based on the LASSO model.

Results: This study classified Cancer Genome Atlas (TCGA) cohort into high and
low CAFs infiltrate phenotype with different CAFs infiltration enrichment scores.
Then TOP 9 genes were screened as prognostic signatures among 2,488
differentially expressed genes between the two groups. Key prognostic
molecules were CGREF1, CORT and RHBDL2 and the risk score formula is:
Risk-score = CGREF1*0.004 + CORT*0.004 + RHBDL2*0.002. The signatures
were validated to be independent prognostic factors to predict tumor prognosis
with single-factor COX and multi-factor COX regression analyses and Norton
chart. The risk score expression of risk score model genes could predict the drug
resistance, and significant differences could be found between the high and low
scoring groups for 17-AAG, AZD6244, PD-0325901 and Sorafenib.

Discussion: To sum up, this article validated the prediction role of CAF infiltration
in the prognosis of OS, which might shed light on the treatment of OS.
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1 Introduction

OS is one of the most prevalent primary malignant bone tumors,
which occurs principally in kids, teenagers and young adults (Keil,
2020). Operative resection and combined chemotherapy treatment can
cure about 70% of patients, and the 5-year survival rate of patients with
limited osteosarcoma has increased significantly in the past decades
(Kansara et al, 2014; Robison and Hudson, 2014). However, as a highly
aggressive tumor, the 5-year survival rate for patients with recurrent and
metastatic OS remains at approximately 20%, virtually constant for the
past 30 years (Kansara et al, 2014). Therefore, the treatment of
osteosarcoma still requires the application of new therapies.

It has been shown that the tumor microenvironment is actively
involved in tumor progression (Liotta and Kohn, 2001; Mueller and
Fusenig, 2004). The activated mesenchymal cells, CAFs, are a major
component of the tumor microenvironment (Chen and Song, 2019).
Compared to normal fibroblasts, multiple protein markers are
overexpressed in CAFs depending on the tumor type such as α-
smooth muscle actin (α-SMA) or fibroblast activation protein (FAP)
(Kalluri and Zeisberg, 2006). CAFs could interact with tumor cells by
releasing secreted proteins such as transforming growth factor β (TGF-β),
insulin-like growth factor (IGF) and interleukin-6 (IL-6), regulating
immune feedback or remodeling of the extracellular matrix, etc. (Ishii
et al, 2016). Meanwhile, it was demonstrated that the composition of
CAFs is heterogeneous, different degrees of CAFs activation would
generate different subgroups of CAFs and play a variable role in the
progression of tumors (Wang et al, 2021).

OS is a low immunogenic tumor that is less likely to induce an
immune response in the host by contrast to immunotherapy effective
cancers such as malignant melanoma and lung cancer (Yahiro and
Matsumoto, 2021). Immunogenicity is determined by what is known as
the tumormutation burden (TMB), i.e., the accumulation ofmutations in
the tumor. As a type of sarcoma, OS has a low TMB value.
Immunogenicity will largely determine the effectiveness of
immunotherapy, and low immunogenicity of OS would result in
fewer immune cells tumor-infiltrating and tumor-specific T-cells,
making immunotherapy ineffective (Wang et al, 2019a; Yahiro and
Matsumoto, 2021). Over the past few decades, the tumor
microenvironment has been recognized as a rich target for anti-tumor
therapy (Turley et al, 2015), Numerous preclinical studies have also
shown that CAFs could be a potential promising target for anti-tumor
immunotherapy (Kalluri, 2016; Ziani et al, 2018; Kobayashi et al, 2019).

In osteosarcoma, the studies on the role of CAFs are still few in
quantity. Here, as detailed flow chart of this study demonstrated, data
derived from TCGA and GEOwere divided into high and low fibroblast
groups according to CAFs infiltration enrichment scores, and patients in
the high fibroblast group had significantly longer OS survival time than
those in the low fibroblast group, they differed significantly in stromal
and immune-related scores. Then, differentially expressed genes (DEGs)
were further screened and enriched for pathways in the GO database of
MF, BP, CC, and KEGG, and most of the differentially expressed genes
were found to be enriched for immune-related pathways. Next, based on
univariate COX regression analysis, 9 genes significantly associated with
overall patient survival were screened and identified as fibroblast-related
risk markers, and three of them were screened as prognostic molecules.
Assigning prognostic molecules with different weights, the risk score of
each sample was calculated and samples were divided into high risk and
low risk groups based on the median, and the prognostic difference

between them was verified using ROC curves. The risk score could be
used as an independent predictor of prognosis. For patients with higher
risk scores, there was a tendency for higher tumor microenvironment
scores and significantly altered tumor hallmark pathway genes. Finally,
comparing the IC50 of the drugs, there was a significant difference in the
drug sensitive profile between the high and low scoring groups.

2 Materials and methods

2.1 Dataset and source

In this study, we used TCGA (https://portal.gdc.cancer.gov/) and
GEO (https://www.ncbi.nlm.nih.gov/geo) (GSE21257 and GSE39058)
platforms for data analysis, and the data of the two platforms were used
respectively. First, the processed RNA-seq data (88 samples, 85 survival
data) and the corresponding clinical and molecular information were
retrieved from the TCGA database. After excluding 90% of the NA
fields in clinical information, race, gender, age, and site_of_resection_
or_biopsy were selected as clinical characters, 85 patients from TCGA
cohort were included. The analysis was performed by TCGA data for
subtype exploration, prognosis-related gene screening and prognostic
model construction. Then we validated the prognostic model using
GEO microarray data. Processed data of tumor tissue from patients
with osteosarcoma was downloaded from NCBI GEO with accession
code GSE39058 and GSE2125. Age, gender, and recurrence were
selected as clinical characters in GSE39058 cohort and metastases,
and huvos.grade for GSE2125 cohort. Data from the two cohorts of the
GEO platform were merged by the COMBAT function in the R sva
package. The same type of clinical information (age, gemder) was
combined in a clinical correlation analysis. Each of the GSE39058 and
GSE2125 cohorts corresponded probes to genes based on information
from their corresponding microarrays, and empty vector probes were
removed. If multiple probes corresponded to one gene, we selected the
median of these probes as the expression level of that gene. As a result,
95 patients from GSE39058 and GSE2125 cohort were included in our
study. The flow chart of the experiment could be found in Figure 1.

2.2 Data preprocessing

The downloaded TCGA expression profile data in FRKM format
was converted to TPM format. The EPIC, MCP-counter, and Xcell
methods were used to calculate the percentage of immune cell
infiltration in each sample. The results of the K-M analysis and
the one-way COX analysis were compared between above three
methods and the Xcell method was selected as it had the best results.
To analyze the differences between patients with high CAF scores
and low CAF scores, we used the median of the CAF score-based
cohort to divide the patients into the high CAF and low CAF groups
to reduce the bias caused by the different numbers in the two groups.

2.3 GSVA pathway analysis

GSVA (Gene set variation analysis) is a non-parametric,
unsupervised algorithm that calculates enrichment scores for
specific gene sets in each sample without pre-grouping the
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samples. By using the MSigDB-hallmark gene as the reference gene
set and set p-value to <0.05, we performed GSVA and implemented
using package clusterProfiler in R. The commonly activated or
suppressed pathways were identified.

2.4 Nomogram construction

Clinical information and risk scores including age, gender and
tissue origin included in the TCGA cohort were selected for
nomogram development, the prognostic risk score models were
built using the RMS package. Performance of the model was
validated in the TCGA cohort using time-dependent calibration
curves and Harrell’s concordance index (C-index) to assess the
prognosis validity of the model.

2.5 Identification of prognosis-related genes

COX regression analysis and K-M survival analysis were
performed to identify the genes which might related to overall
survival in database and evaluated the contribution of the genes,
p < 0.05 was considered as statistically significant. The analysis was
conducted with the package of survival and survminer.

2.6 Constructing risk scores and prognostic
predictive assessments based on the lasso
model

Interactions between genes might form covariate gene clusters,
we use R/Bioconductor’s lars and glmnet R language package for
Lasso regression to reduce the impact of this covariation and
improve the accuracy and interpretability of the model. Then we
used cross-validation to determine the corresponding parameters in
order to obtain a suitable model within the existingmodels. Based on
the obtained model, we calculated the risk score (Risk score =
∑N

i�1coefip exp ri) for each patient, in which N is the number of
genes selected, expri is the expression value of each gene and coefi is
the multivariate COX regression coefficient. The cohort was divided
into low-risk and high-risk groups based on the median risk score,
and survival analysis was performed between the two groups using
the Kaplan-Meier progression. ROC curves were plotted to predict
prognostic 1-, 3-, and 5-year survival rates for patients with
osteosarcoma using the survivalroc R package.

2.7 Differential gene analysis and pathway
annotation

Data from the TCGA cohort were formatted using the read
count package and differential analysis was performed using the
deseq2 R package to screen for differential genes between high and
low risk scores (p-value <0.01 and abs (log2FoldChange) > 1).
Differential analysis was performed on the GEO microarray data
via the limma package and screened the differential genes as
described above. Gene set enrichment analysis (GSEA) was
performed using the clusterProfiler R language package, with the

using of “h.all.v7.0.entrez.gmt” as the reference gene set. p-values
were adjusted using the Benjamini and Hochberg methods, and
p-values <0.05 were considered as statistic significant.

2.8 Drug resistance assessment by CAFs
score

Firstly, based on the expression profile matrix of 471 cell lines
downloaded from Cancer Cell Line Encyclopedia (CCLE), the
CAFs scores in each cell line sample were calculated by CAFs
score model, then the cohort in each sample was divided into
high-CAFs group and low-CAFs group based on median, then
the resistance IC50 assessment of 471 samples with 24 drugs was
corelated, and whether there was a significant difference in drug
resistance between the two groups was tested by Wilcoxon signed
rank test.

2.9 Cell culture and CCK-8 test

HOS and MG-63 cells were purchased from Meisen Cell
Technology Co., Ltd. Cells were cultured in Dulbecco’s modified
Eagle medium (DMEM) (Gibco, United States) containing 10% fetal
bovine serum and 100 units/mL penicillin-streptomycin. The
viability of cells after treatment with 17-AAG (MCE,
United States), AZD6244 (MCE, United States), PD-0325901
(MCE, United States), Sorafenib (MCE, United States) was
determined using Cell Counting Kit-8 (CCK-8) kit (Beyotime,
China). HOS and MG-63 cells were inoculated in 96-well cell
culture plates at a density of 5×104 cells/mL and incubated for
24 h to make cells adhere to the wall. Cells were then treated
with 17-AAG, AZD6244, PD-0325901, and Sorafenib at a
concentration of 1 μM for 72 h, respectively. Then 10% CCK-8
solution was added, and incubated for 2 h at 37°C. Cell viability
after different drug interventions was determined by measuring
absorbance values measured at 450 nm on an automated detector
(BioTek, United States). All cells were incubated in an incubator at
37°C with 5% CO2.

2.10 Immunohistochemistry (IHC)

To further validate the expression of the three predicted
genes, six pairs of paraffin-embedded osteosarcoma tissues and
adjacent tissues were collected for IHC analysis. The study was
approved by the Institutional Review Board of the First Affiliated
Hospital of the Air Force Military Medical University, and all
patients signed an informed consent form. All tissue sections
were dewaxed, antigen-repaired, blocked, incubated with
primary antibodies and secondary antibodies, and antibodies
used included CGREF1 (ABclonal, A14844), RHBDL2
(GeneTex, GTX46323) and CORT (santa, sc-393108). Finally,
the sections were stained using the DAB kit (CWBIO, CW 2035S)
and hematoxylin. Protein expression of the three molecularly
stained sections in each sample was observed by microscopy, and
the positive rate relative to paracancer tissue for each IHC stained
section was calculated using ImageJ software.
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2.11 Statistical analysis

The version of the R used in this paper was R version 4.1.0
(2021-05-18)—“Camp Pontanezen”. The Wilcox method was used
to analyze the scoring tests between the two groups and kruskal test
was used to test for three or more groups. In the statistical plots,
difference of p < 0.05 was considered as significant.

3 Results

3.1 Identification of CAFs infiltrate
phenotype and analysis of clinical features

Firstly, after obtaining CAFs infiltration enrichment scores from
the TCGA cohort and applying the cut-off grouping as the median,
K-M survival analysis showed a significant difference in prognostic
survival between the two groups, with the high group having a better
prognosis [HR (hazard rate): 2.13 (4.81-0.94)] (Figure 2A). Using
univariate and multivariate Cox regression analysis with clinical
information, the CAFs were shown to be independent prognostic
factors (p < 0.05, Figures 2B,C). We further analyzed the correlation
between CAFs enrichment score and other immune cell infiltration
and immune correlation scores (Figure 2D), which showed a
significant positive correlation between CAFs and Stroma Score,
a significant positive correlation between CAFs and chondrocytes in
osteosarcoma tissue, and a significant negative correlation with
Th1_cells and pro_B-cells.

3.2 Correlation between the differences in
clinical characteristics of CAFs and
ESTIMATE algorithm scores

In view of the crucial roles of the CAFs in tumor progression, we
further analyzed the correlation between the differences in CAFs
between clinical characteristics and ESTIMATE algorithm scores

(Figure 3). The results showed that there were significant differences
in StromalScore and ESTIMATEScore between the groups with high
and low CAFs infiltrate phenotype. We also found that the low CAFs
infiltration group has a higher tumor cell purity.

3.3 Screening of CAF candidate markers and
functional analysis

2,488 differentially expressed genes between the two groups were
identified in TCGA, with 637 significantly upregulated and
1851 downregulated (Figure 4A). The expression heat map of the
differential genes was shown in Figure 4B. The enrichment results of
MF, BP, CC in the GO and KEGG showed that most of the
differential genes were enriched in immune-related pathways:
B cell mediated immunity, humoral immune response, etc.
(Figures 4C–F).

3.4 Construction and validation of
prognostic signatures of CAFs

Based on the differential gene expression profiles screened
above, we used one-way COX regression analysis to screen
prognostic signatures associated with patient prognosis, and TOP
9 genes including AOC4P, BMP8B, CGREF1, CORT, CPNE5,
CTAGE14P, DUX4L27, GANT14, and GJA5 were selected
(Figure 5A). The results of K-M survival analysis demonstrated
the prognostic differences of genes [AOC4P, HR: 0.36 (0.76-0.17);
BMP8B, HR: 0.35 (0.73-0.17); CGREF1, HR:0.3 (0.62-0.14); CORT,
HR: 0.29 (0.6-0.14); CPNE5, HR: 0.34 (0.71-0.16); CTAGE14P, HR:
0.35 (0.74-0.17); DUX4L27, HR: 0.36 (0.75-0.17); GANT14, HR:
0.22 (0.46-0.1); and GJA5, HR: 2.85 (5.91-1.36)], the risk signatures
could predict the prognosis of OS patients in most cases (Figure 5A).
Then we constructed a regression model with the LASSO algorithm
based on the above prognosis-related CFA markers, and the result
showed the confidence interval under each lambda (Figure 5B).

FIGURE 1
Flow chart of the experiment.
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Then wemodified the parameters of the LASSO regression model by
cross-validation (Figure 5C). Based on the results of the above
prognostic predictors, we selected three gene signatures CGREF1,
CORT and RHBDL2 as key prognostic molecules and calculated a
risk score for each sample based on the weight threshold of each
signature, the risk score formula in LASSO-Cox regression analysis
is: Risk-score = CGREF1*0.004 + CORT*0.004 + RHBDL2*0.002. In
addition, we analyzed risk scores and prognostic assessments using
multifactorial COX survival analysis using the TCGA database and
GEO database respectively and plotted forest plots (Supplementary
Figure S1). The analysis showed that CGREF1 in both GEO database
and TCGA database and RHBDL2 in TCGA database showed
promising predictions. Then we classified patients into high and
low risk score groups using the median as the threshold (Figure 5D).
Furthermore, the accuracy of risk score as a prognostic factor for OS
was validated through ROC curve analysis using TCGA training set
sample, the results of the survival analysis showed that there were
significant differences between patients in groups with high and low
scores (Figure 5E), Finally, the results were validated on a validation

set cohort obtained by combining GSE21257 and GSE39058, which
showed a significant difference in prognostic survival between the
high and low risk score groups (Figures 5F–I). We then validated of
gene expression in tissue of osteosarcoma patients. We
demonstrated the results by IHC experiments, and observed that
CGREF1, CORT and RHBDL2 proteins expression were high in the
tissue of osteosarcoma patients, while the proteins were lowly
expressed in normal tissue (Supplementary Figure S2).

3.5 CAFs signature could be used as an
independent prognostic factor to predict
tumor prognosis

We analyzed the correlation between CAF risk score and clinical
characteristics, The results showed that as the risk score increased,
the incidence of tumor metastasis increased correspondly, and there
was a strong positive correlation between them, whereas the risk
score was less correlated with other clinical differential

FIGURE 2
Identification of CAFs infiltration phenotype and analysis of clinical features. (A) K-M survival analysis between high and low CAFs score patient
groups. (B, C)Univariate COX regression andmultivariate COX regression analysis of factors including CAFs. (D)Correlation analysis of CAFs with immune
indexes and immune-related cells.

Frontiers in Pharmacology frontiersin.org05

Zhihao et al. 10.3389/fphar.2023.1136960

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1136960


characteristics, we then performed single-factor COX and multi-
factor COX regression analyses based on the TCGA data set and the
patients’ clinical characteristics to verify whether the CAF risk score
could be used as an independent predictor of prognosis (Figures 6A,
B). In addition, the Norton chart results showed that the CAF risk
score had the greatest weighting and stronger prognostic power
(Figures 6C, D). Above results showed that the CAF score could be
used as an independent predictor of prognosis.

3.6 CAFs prognostic signature correlates
with immune infiltration and tumor
development

We explored the relationship between CAF risk score
groupings and each tumor microenvironment cell (immune
cells and stromal cells) and each immune score, and
characterized its expression with a heat map, which showed
that CAF infiltration did not correlate exactly positively with

risk score, but patients with high-risk score had relatively low
CAF infiltration (Figure 7A). Finally, based on the gene
expression data profile of the high and low risk score groups,
the R package clusterprofiler was used to enrich for 50 tumor-
associated hallmark pathways, and we observed significant
changes in the regulation of genes in the tumor-associated
pathways (Figure 7B). In addition, we also analyzed the
correlational relationship of the CAFs scores and the
immune cells infiltration biomarker and immune suppression
biomarkers using TCGA database (Figure 3S), and found a
significant negative correlation between CAFs and CD 8, CD
25, and CD 206.

3.7 CAFs prognosis signature-associated
drug resistance assessment

Finally, we assessed the relationship between risk score and drug
resistance in cell lines. From the CCLE (https://sites.broadinstitute.org/ccle)

FIGURE 3
The differences of CAFs among patients with different clinical characteristics evaluated by the ESTIMATE algorithm.
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we downloaded information on 471 cell lines with expression profile
data and resistance information (IC50) to 24 drugs, showing
significant differences between the high and low scoring groups
for 17-AAG, AZD6244, PD-0325901 and Sorafenib, there were

significant differences between the high and low risk score
groups (Figure 8A). We also analyzed the relationship between
the expression of risk score model genes (RHBDL2, CORT,
CGREF1) and drug resistance; we screened for significant

FIGURE 4
Screening of candidate gene markers of CAFs and functional analysis. (A) Volcano plot of differentially expressed genes between high and low CFAs
score groups. (B) Expression profiles of differentially expressed genes between high and lowCFAs score groups. (C–E): Enrichment results for BP, MF, and
CC pathways in the GO database. (F) Results of pathway enrichment in KEGG.
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FIGURE 5
Construction and validation of CAFs prognostic signatures. (A) K-M survival analysis of Top 9 prognostic signatures. (B) A LASSO regression model
was constructed using 28 candidate genes. (C) LASSO regression parameters were adjusted by cross validation. (D, E)Differences in the distribution of risk
scores and prognostic signatures expression between high-risk and low-risk score groups. (F, G) The CAFs prognostic signatures were verified by K-M
survival analysis and ROC curve drawing using TCGA training set. (H, I) The GSE21257 andGSE39058 cohorts were used for K-M survival analysis and
ROC curve to verify the CAFs prognostic signatures.
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differences in IC50 drug response between the high and low scoring
groups based on median expression (Figures 8B–D); Finally, we
observed a correlation between the IC50 response and gene
expression, which confirmed the above findings (Figure 8E). To
further validate the drug sensitivity in osteosarcoma cells, we used
CCK-8 tomeasure the cellular viability.We demonstrate that the cell
viability of HOS and MG63 cell lines was marked suppressed after
17-AAG, AZD6244, PD-0325901 and Sorafenib induction
(Supplementary Figure S2).

5 Discussion

In recent years, numerous studies have shown that CAFs
could play a regulatory role in tumors such as pancreatic and
colorectal cancers by affecting stromal-tumor cell interactions,
immune feedback, angiogenesis, and extracellular matrix
remodeling (Kobayashi et al, 2019). Previous studies have
reported a regulatory role of CAFs in the progression of
osteosarcoma (Wang et al, 2019b; Zhao et al, 2021); however,

FIGURE 6
CAFs prognostic signatures could be used as an independent prognostic factor for OS. (A, B) CAFs risk score could be an independent prognostic
factor confirmed by univariate andmultivariate COX retrospective analyses. (C)Norton plot with clinical information. (D)Correction curves for one, three
and 5 years.
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studies on the overall function of CAFs in osteosarcoma are still
limiting.

In the current study, we examined the role of CAF infiltration and
clustering in predicting osteosarcoma prognosis. Based on XCELL
calculation of enrichment scores and grouping by median scores,
interestingly, we show for the first time that CAF high infiltration
group has a better prognosis, and this difference may come from the
dual pro-tumorigenic and tumor-suppressive roles of CAFs exhibited
simultaneously in different tumor microenvironments (Wang et al,
2021). Our results also showed that the enrichment score of CAFs was
positively and significantly correlated with stromal cell score and
chondrocyte content, implying that CAFs might occupy a dominant
position in the stromal component of osteosarcoma. Although studies
surrounding the role of CAFs in tumors have gradually increased in

recent years, there are few studies on the role of CAFs in the prognostic
evaluation of osteosarcoma. In the present study, we evaluated that the
high infiltration of CAFs plays a role in the prognosis of osteosarcoma,
and the results suggest that CAFs risk score is an independent factor
influencing the progression of osteosarcoma.

We identified numerous transcriptomic alterations and
enrichment pathways in the CAFs highly infiltrated group
compared with the low group. Enrichment by GO database and
KEGG database showed that immune-related pathways such as
B cell mediated immunity, humoral immune response are
potentially critical pathways. We construct a survival risk model
using CORT molecules, which are closely related to immune
response (McCormick et al, 2015), and obtained good tumor risk
prognosis, highlighting the potential role of immune-related

FIGURE 7
CAFs prognostic signatures associated with immune infiltration and tumor progression. (A) Heatmaps of immune cells and immune scores
corresponding to high and low risk scores of CAFs. (B) Results of hallmark pathway enrichment between high and low score groups.
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pathways in the progression of osteosarcoma. In addition, whether
greater benefit could be obtained with intervention of specific
immune pathway inhibitors deserves to be further investigated.

Increasing evidence suggests that CAFs infiltrating in tumors might
break down immunosuppression in tumors and further enhance tumor
response to immunotherapy. Several current therapeutic strategies

FIGURE 8
Assessment of associated resistance for CAFs prognostic signatures. (A) Drugs with significantly differentially in IC50 expression between high-risk
and low-risk groups. (B–D): Drugs with differential IC50 between high and low expression groups of RHBDL2, CORT, and CGREF1. (E) Correlation
between RHBDL2, CORT, and CGREF1 expression and drug sensitivity.
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targeting CAFs include direct depletion of CAFs by immunotherapy
targeting cell surface markers; normalizing activated CAFs; and
targeting CAFs secreted extracellular matrix proteins or their
associated signals (Chen and Song, 2019; Liu et al, 2019).
Nanodrugs selectively target CAFs has also been shown to enhance
infiltration of cytotoxic T-cells thereby to suppress tumor proliferation
(Zhen et al, 2017). Studies have shown that the synergistic effect of
immune checkpoint molecules and targeted CAFs may enhance the
immunotherapeutic response by modulating the immunosuppressive
environment (Feig et al, 2013). Our study indicates that CAFs in the
extracellular matrix may be involved in the induction and formation of
immune microenvironment during osteosarcoma progression and
induce the phenotypic transformation of the tumor. Therefore, a
better understanding of the interaction between CAFs and
antitumor immunity would be beneficial for the establishment of
effective immunotherapy. The emerging approaches such as single-
cell RNA sequencing (Moncada et al, 2020) and spatial transcriptome
(Xu et al, 2021) could provide a more comprehensive understanding of
the spatial and temporal dynamics of CAFs interactions with tumor and
immune cells and their specific roles in the osteosarcoma stroma.

With the function of producing inflammatory ligands, grown
factors and extracellular matrix which could facilitate the tumor
growth, resistance to treatment and immune escape, CAFs are
always considered as the factor that promote tumorigenesis
(Kalluri, 2016). However, with the establishment of new co-
culture model and the development of single-cell RNA-
sequencing (scRNA-seq) techniques, the subpopulation of CAFs
has been found (Öhlund et al, 2017; Elyada et al, 2019; Hu et al,
2022). Öhlund et al (2017) found two different subclasses of CAFs.
One group is distributed around tumor cells and highly expresses α-
smooth muscle actin (α-SMA), which can produce connective
tissue-forming matrix and is named myofibroblast CAFs
(myCAFs). The other group is located far from the tumor cells,
which is low in α-SMA expression and can secrete inflammatory
factors such as IL-6, and is called inflammatory CAFs (iCAFs). In
addition, based on scRNA-seq analysis, the study of Elyada et al
identified three different CAFs subsets in pancreatic ductal
adenocarcinoma. In addition to myCAFs and iCAFs which are
previously identified, antigen presenting CAFs (apCAFs) that can
utilize cell-expressed MHC II complexes and CD74 for antigen
presentation have also been identified, which can present antigen to
T-cells and play an anti-tumor role (Elyada et al, 2019). In this study,
we found a prediction role of CAFs in the prognosis of OS, a further
investigation might be need to clarify the prediction function of each
subpopulation of CAFs in OS prognosis with the application of
scRNA-seq analysis.

There are limitations present in the present study. First, we did not
perform experiments to validate the relationships between CAFs and
immune cells which were estimated by purely bioinformatic methods.
Whether the conclusions obtained can be consistent with the real world
should be viewed with caution. In the study, to reduce the possible bias
brought by the analytical approach to CAFs, we scored CAFs using
ordered categorical variables, resulting in a more consistent high CAF
group or low CAF group. In this study, the data were processed by the
XCELL computational algorithm after screening the MCPCOUNTER,
XCELL, and EPIC algorithms, and the type abundance of cells was
quantified by database-based cell labeling or deconvolution of cell
mixtures based on gene expression matrices, and the above-

mentioned methods allowed comparison between samples with
identical cell types. In addition, multiple datasets from TCGA and
GEO were used in this study to make the results obtained more robust,
so the conclusions drawn in this study can still provide implications for
interpreting the clinical and biological significance of CAFs. Second,
large tumor tissues are amixture of tumor cells themselves, stromal cells
and immune cells as a whole, and transcriptomic changes and pathway
alterations in each composed of them still need more experimental
studies in the future. Meanwhile, this paper’s description of the role of
CAFs on the clinical characteristics, clinical prognosis and prediction of
the immune microenvironment of patients did not consider the
subtypes and the spatial-temporal heterogeneity of CAFs. As there is
a lack of universal markers for CAFs (Mueller and Fusenig, 2004; Biffi
and Tuveson, 2021), the panorama of CAFs is difficult to be observed.
ScRNA-seq technology has provided new insights in recent years. The
identification of CAF subtypes in osteosarcoma using scRNA-seq
technology has been reported (Huang et al, 2022). It is expecting
that the gaps in this research area would be filled soon.
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SUPPLEMENTARY FIGURE S1
Forest plots for assessments of risk scores and prognostic effect using
multifactorial COX survival analysis for genes in TCGA database (A) and GEO
database (B).

SUPPLEMENTARY FIGURE S2
Validation of candidate genes and drug sensitivity. (A–C): Validation of
expression level of CGREF1, CORT and RHBDL2 in osteosarcoma and para-
cancer tissue by IHC analysis. (D–E): Verification of the sensitivity for 17-

AAG, AZD6244, PD-0325901 and Sorafenib in HOS and MG63 cell lines by
testing the cellular viability with CCK-8 measurement.

SUPPLEMENTARY FIGURE S3
The correlational relationship of the CAFs scores and the markers of immune
cells infiltration and immune suppression. (A): Correlation analysis on the
CAFs score and the expression level of immune cells infiltration biomarker
CD 8; (B–D): Correlation analysis on the CAFs score and the expression level
of immune suppression biomarker CD 4, CD 25, and CD 206.
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