128 research outputs found

    Effect of 1-MCP on storage quality and the mechanism involved in ethylene signal transduction in a new early-maturing apple variety ‘Taihangzaohong’ fruits during cold storage

    Get PDF
    1-Methylcyclopropene (1-MCP) can reduce the rate of fruit softening and prolong storage time. In this study, the fruit of a new early-maturing apple variety, ‘Taihangzaohong’, was treated with air (control), 2 μL/L 1-MCP, 100 μL/L ethylene (C 2H4) or 2 μL/L 1-MCP +100 μL/L C2H4 for 24 hours and then stored at 4 °C for 70 days. The postharvest physiological indices and the expression of 13 genes related to ethylene biosynthesis and signal transduction were monitored every 10 days. The results showed that 1-MCP can delay the softening rate and maintain the fruit quality of this early-maturing apple variety by reducing ethylene production by reducing the expression of MdACO1, MdACO2, and MdACS1, as well as by preventing ethylene signal transduction by decreasing the expression of MdETR2 and MdERS1 and increasing the expression of MdCTR1. Understanding the significant changes in these genes and their functions may help us explore the mechanisms controlling apple fruit softening and its response to exogenous 1-MCP and ethylene stimuli, as well as inhibition at the receptor level during ripening and senescence

    Construction and Evaluation of Mandarin Multimodal Emotional Speech Database

    Full text link
    A multi-modal emotional speech Mandarin database including articulatory kinematics, acoustics, glottal and facial micro-expressions is designed and established, which is described in detail from the aspects of corpus design, subject selection, recording details and data processing. Where signals are labeled with discrete emotion labels (neutral, happy, pleasant, indifferent, angry, sad, grief) and dimensional emotion labels (pleasure, arousal, dominance). In this paper, the validity of dimension annotation is verified by statistical analysis of dimension annotation data. The SCL-90 scale data of annotators are verified and combined with PAD annotation data for analysis, so as to explore the internal relationship between the outlier phenomenon in annotation and the psychological state of annotators. In order to verify the speech quality and emotion discrimination of the database, this paper uses 3 basic models of SVM, CNN and DNN to calculate the recognition rate of these seven emotions. The results show that the average recognition rate of seven emotions is about 82% when using acoustic data alone. When using glottal data alone, the average recognition rate is about 72%. Using kinematics data alone, the average recognition rate also reaches 55.7%. Therefore, the database is of high quality and can be used as an important source for speech analysis research, especially for the task of multimodal emotional speech analysis

    Staphylococcus aureus increases Prostaglandin E2 secretion in cow neutrophils by activating TLR2, TLR4, and NLRP3 inflammasome signaling pathways

    Get PDF
    IntroductionIn clinical settings, dairy cows are often attacked by pathogenic bacteria after delivery, especially Staphylococcus aureus (S. aureus). Neutrophils have long been regarded as essential for host defense against S. aureus. Prostaglandin E2 (PGE2) can additionally be used as an inflammatory mediator in pathological conditions to promote the repair of inflammatory injuries. However, whether S. aureus can promote the accumulation of PGE2 after the infection of neutrophils in cows and its mechanism remain unclear. Lipoprotein is an important immune bioactive ingredient of S. aureus.MethodsIn this study, the changes in neutrophils were monitored in dairy cows infected with wild-type S. aureus (SA113) and an S. aureus lipoprotein-deficient strain (Δlgt); meanwhile, we established whether pattern recognition receptors mediate this process and whether S. aureus lipoproteins are necessary for causing the release of PGE2 from cow neutrophils.ResultsThe results showed that Δlgt was less effective than SA113 in inducing the production of IL-1β, IL-6, IL-8, IL-10, and PGE2 within neutrophils; furthermore, TLR2, TLR4, and NLRP3 receptors were found to mediate the inducible effect of lipoprotein on the above inflammation mediators and cytokines, which depended on MAPK and Caspase-1 signaling pathways. In addition, TLR2, TLR4, and NLRP3 inhibitors significantly inhibited PGE2 and cytokine secretion, and PGE2 was involved in the interaction of S. aureus and neutrophils in dairy cows, which could be regulated by TLR2, TLR4, and NLRP3 receptors. We also found that S. aureus was more likely to be killed by neutrophils when it lacked lipoprotein and TLR2, TLR4, and NLRP3 were involved, but PGE2 seemed to have no effect.DiscussionTaken together, these results suggest that lipoprotein is a crucial component of S. aureus in inducing cytokine secretion by neutrophils as well as killing within neutrophils, which could be accomplished by the accumulation of PGE2 by activating MAPK and the Caspase-1 signaling pathways through TLR2, TLR4, and NLRP3 receptors. These results will contribute to a better understanding of the interaction between S. aureus and host immune cells in dairy cows

    Fine Mapping of a Novel Heading Date Gene, TaHdm605, in Hexaploid Wheat

    Get PDF
    The heading date is critical in determining the adaptability of plants to specific natural environments. Molecular characterization of the wheat genes that regulate heading not only enhances our understanding of the mechanisms underlying wheat heading regulation but also benefits wheat breeding programs by improving heading phenotypes. In this study, we characterized a late heading date mutant, m605, obtained by ethyl methanesulfonate (EMS) mutation. Compared with its wild-type parent, YZ4110, m605 was at least 7 days late in heading when sown in autumn. This late heading trait was controlled by a single recessive gene named TaHdm605. Genetic mapping located the TaHdm605 locus between the molecular markers cfd152 and barc42 on chromosome 3DL using publicly available markers and then further mapped this locus to a 1.86 Mb physical genomic region containing 26 predicted genes. This fine genetic and physical mapping will be helpful for the future map-based cloning of TaHdm605 and for breeders seeking to engineer changes in the wheat heading date trait

    The Epitaxial Growth and Unique Morphology of InAs Quantum Dots Embedded in a Ge Matrix

    Get PDF
    In this work, we investigated the epitaxial growth of InAs quantum dots (QDs) on Ge substrates. By varying the growth parameters of growth temperature, deposition thickness and growth rate of InAs, a high density of 1.2 ×1011 cm-2 self-assembled InAs QDs were successfully epitaxially grown on Ge substrates by solid-source molecular beam epitaxy (MBE) and capped by Ge layers. Pyramidal- and polyhedral-shaped InAs QDs embedded in Ge matrices were revealed, which are distinct from the lens- or truncated pyramid-shape dots in InAs/GaAs or InAs/Si systems. Moreover, with 200 nm Ge capping layer, one third of the embedded QDs are found with ellipse and hexagonal nanovoids with sizes of 7 – 9 nm, which is observed for the first time for InAs QDs embedded in a Ge matrix to the best of our knowledge. These results provide a new possibility of integrating InAs QD devices on Group-IV platforms for Si photonics

    Effects of phosphorous and antimony doping on thin Ge layers grown on Si

    Get PDF
    Suppression of threading dislocations (TDs) in thin germanium (Ge) layers grown on silicon (Si) substrates has been critical for realizing high-performance Si-based optoelectronic and electronic devices. An advanced growth strategy is desired to minimize the TD density within a thin Ge buffer layer in Ge-on-Si systems. In this work, we investigate the impact of P dopants in 500-nm thin Ge layers, with doping concentrations from 1 to 50 × 1018 cm−3. The introduction of P dopants has efficiently promoted TD reduction, whose potential mechanism has been explored by comparing it to the well-established Sb-doped Ge-on-Si system. P and Sb dopants reveal different defect-suppression mechanisms in Ge-on-Si samples, inspiring a novel co-doping technique by exploiting the advantages of both dopants. The surface TDD of the Ge buffer has been further reduced by the co-doping technique to the order of 107 cm−2 with a thin Ge layer (of only 500 nm), which could provide a high-quality platform for high-performance Si-based semiconductor devices
    corecore