58 research outputs found

    Experimental study on uniaxial tensile and compressive behavior of high toughness cementitious composite

    Get PDF
    Though the principle of orthogonal experimental design, the uniaxial compression experiment and uniaxial tensile experiment were carried out on nine groups of high toughness cementitious composites with different mixing ratios to study the influence of four factors, namely fly ash content, water-binder ratio, sand-binder ratio and plasticizer content on the compressive strength and ultimate tensile strain of high toughness cementitious composites. The experiment results show that PVA fibers content greatly influenced the flexural behavior and the influence of the four factors on the compressive strength and ultimate tensile strain of high toughness cementitious composite is basically the same, the primary and secondary order is: water-binder ratio, fly ash content, plasticizer content and sand-binder ratio

    Revisiting Single Image Reflection Removal In the Wild

    Full text link
    This research focuses on the issue of single-image reflection removal (SIRR) in real-world conditions, examining it from two angles: the collection pipeline of real reflection pairs and the perception of real reflection locations. We devise an advanced reflection collection pipeline that is highly adaptable to a wide range of real-world reflection scenarios and incurs reduced costs in collecting large-scale aligned reflection pairs. In the process, we develop a large-scale, high-quality reflection dataset named Reflection Removal in the Wild (RRW). RRW contains over 14,950 high-resolution real-world reflection pairs, a dataset forty-five times larger than its predecessors. Regarding perception of reflection locations, we identify that numerous virtual reflection objects visible in reflection images are not present in the corresponding ground-truth images. This observation, drawn from the aligned pairs, leads us to conceive the Maximum Reflection Filter (MaxRF). The MaxRF could accurately and explicitly characterize reflection locations from pairs of images. Building upon this, we design a reflection location-aware cascaded framework, specifically tailored for SIRR. Powered by these innovative techniques, our solution achieves superior performance than current leading methods across multiple real-world benchmarks. Codes and datasets will be publicly available

    Synchronous microbial vanadium (V) reduction and denitrification in groundwater using hydrogen as the sole electron donor

    Get PDF
    Groundwater co-contaminated by vanadium (V) (V(V)) and nitrate requires efficient remediation to prevent adverse environmental impacts. However, little is known about simultaneous bio-reductions of V(V) and nitrate supported by gaseous electron donors in aquifers. This study is among the first to examine microbial V(V) reduction and denitrification with hydrogen as the sole electron donor. V(V) removal efficiency of 91.0 ± 3.2% was achieved in test bioreactors within 7 d, with synchronous, complete removal of nitrate. V(V) was reduced to V(IV), which precipitated naturally under near-neutral conditions, and nitrate tended to be converted to nitrogen, both of which processes helped to purify the groundwater. Volatile fatty acids (VFAs) were produced from hydrogen oxidation. High-throughput 16S rRNA gene sequencing and metagenomic analyses revealed the evolutionary behavior of microbial communities and functional genes. The genera Dechloromonas and Hydrogenophaga promoted bio-reductions of V(V) and nitrate directly coupled to hydrogen oxidation. Enriched Geobacter and denitrifiers also indicated synergistic mechanism, with VFAs acting as organic carbon sources for heterotrophically functional bacteria while reducing V(V) and nitrate. These findings are likely to be useful in revealing biogeochemical fates of V(V) and nitrate in aquifer and developing technology for removing them simultaneously from groundwater

    A new species of shrew moles, genus Uropsilus Milne-Edwards, 1871 (Mammalia, Eulipotyphla, Talpidae), from the Wuyi Mountains, Jiangxi Province, eastern China

    Get PDF
    Asian shrew moles, genus Uropsilus, are the most primitive members of family Talpidae. They are distributed mainly in southwestern China and adjacent Bhutan, Myanmar, and Vietnam. In June 2022, we collected five specimens of Uropsilus from Mount Huanggang, Jiangxi Province, eastern China, which is the highest peak of the Wuyi Mountains. We sequenced two mitochondrial (CYT B and 12S rRNA) and three nuclear (PLCB4, RAG1, and RAG2) genes to estimate the phylogenetic relationship of the five shrew moles. We also compared their morphology with recognized species within the genus. Our results show that these specimens collected from Mount Huanggang differ from all named species in Uropsilus. We formally describe the species here as Uropsilus huanggangensis sp. nov. Morphologically, the new species is distinguishable from the other Uropsilus species by the combination of dark chocolate-brown pelage, long snout, enlarged first upper incisor, similarly sized lacrimal and infraorbital foramens, and the curved and sickle-like coronoid process. The genetic distances of the cytochrome b (CYT B) gene between U. huanggangensis and other recognized Uropsilus species ranged between 9.3% and 16.4%. The new species is geographically distant from other species in the genus and is the easternmost record of the Uropsilus. The divergence time of U. huanggangensis was estimated to be the late Pliocene (1.92 Ma, 95% CI = 0.88–2.99)

    A new species of shrew moles, genus Uropsilus Milne-Edwards, 1871 (Mammalia, Eulipotyphla, Talpidae), from the Wuyi Mountains, Jiangxi Province, eastern China

    No full text
    Asian shrew moles, genus Uropsilus, are the most primitive members of family Talpidae. They are distributed mainly in southwestern China and adjacent Bhutan, Myanmar, and Vietnam. In June 2022, we collected five specimens of Uropsilus from Mount Huanggang, Jiangxi Province, eastern China, which is the highest peak of the Wuyi Mountains. We sequenced two mitochondrial (CYT B and 12S rRNA) and three nuclear (PLCB4, RAG1, and RAG2) genes to estimate the phylogenetic relationship of the five shrew moles. We also compared their morphology with recognized species within the genus. Our results show that these specimens collected from Mount Huanggang differ from all named species in Uropsilus. We formally describe the species here as Uropsilus huanggangensis sp. nov. Morphologically, the new species is distinguishable from the other Uropsilus species by the combination of dark chocolate-brown pelage, long snout, enlarged first upper incisor, similarly sized lacrimal and infraorbital foramens, and the curved and sickle-like coronoid process. The genetic distances of the cytochrome b (CYT B) gene between U. huanggangensis and other recognized Uropsilus species ranged between 9.3% and 16.4%. The new species is geographically distant from other species in the genus and is the easternmost record of the Uropsilus. The divergence time of U. huanggangensis was estimated to be the late Pliocene (1.92 Ma, 95% CI = 0.88–2.99)

    Pathological dislocation of the hip due to coxotuberculosis in children: a 29-case report

    Get PDF
    BACKGROUND: The aim of this study is to evaluate the clinical outcome of various surgery methods in children suffering pathological dislocation of the hip joint due to coxotuberculosis. PATIENTS AND METHODS: From January 2006 to January 2011, 29 children with coxotuberculosis hip dislocation were treated with open reduction (4 children) and acetabular reconstruction (25 children). According to degree of dislocation and age, acetabular reconstructions included Salter osteotomy (nine children), Pemberton operation (six children), Dega operation (seven children), the hip shelf arthroplasty (two children), and Chiari operation (one child). During acetabular reconstruction, 16 children underwent upper femoral rotational shortening osteotomies simultaneously, 6 children underwent the femoral head and neck reconstruction simultaneously, and 3 children were underwent corrective osteotomy. After operation, children were immobilized with plaster external fixation for 1–3 months and treated with routine anti-infective therapy for 3 days. During follow-up study (12–18 months), the hip stability was examined via X-ray. The recovery was evaluated via acetabular index (AI) and Harris hip score. RESULTS: Postoperative X-ray films of 29 children showed concentric reduction of all hips. Total 25 children healed I incision surgery, while 4 children with skin antrum of incision were further treated leading to 1–3 months delay of healing. Total 24 children were followed up for 2–5 years. X-ray examination revealed no redislocation after 2 years postoperative. The postoperative AI was normal (15°–20°) in 22 children and increased to 25°– 30° in 2 children. After 2 years postoperative, 8 children had normal function of hip joint, 13 children had mild limitation of flexion and rotation, and 3 children had fibrous ankylosis. The average of Harris hip score was 83 (ranged, 62–90). CONCLUSION: In our study, pathological hip dislocations of children attributed to coxotuberculosis were treated via open reduction and acetabular reconstruction and the outcomes were both excellent. Individual characteristic should be taken into consideration during treatment, and proper surgery approach should be adopted according to pathological changes of the hip
    • …
    corecore