26 research outputs found

    The ride comfort and energy-regenerative characteristics analysis of hydraulic-electricity energy regenerative suspension

    Get PDF
    For optimization of performances of a hydraulic-electricity energy regenerative suspension (HERS) unit, the tradeoff point was determined based on study of ride comfort and energy-regenerative characteristics of a HERS unit in this study. A HERS unit as a new energy reclaiming suspension device is equipped with an energy-harvesting hydraulic electromagnetic shock absorber (HESA). The HESA together with a quarter car was modeled based on theoretical analysis and experiments, in which the root mean square (RMS) values of the sprung mass vibration acceleration and the recovered power are regarded as the optimization objectives under different road excitation conditions such as the constraints (natural frequency, dynamic displacement, and dynamic load of wheels). The HERS unit was optimized after the relationship between the ride comfort and the energy regeneration was obtained. In comparison with the traditional suspension, the HERS unit may be utilized to improve the ride comfort and meet the vehicle-driving requirements. Moreover, the total input power may be saved by 34-100 W on average while the vibration acceleration is among 0.65-1.06 m/s2. Furthermore, it is verified that the HERS damping force control is the feasible under various load currents

    The net power control of hydraulic-electricity energy regenerative suspension

    Get PDF
    For achieving the control of hydraulic-electricity energy regenerative suspension (HERS), a novel control algorithm, net power control (NPC), is applied in this study. A HERS unit as a new energy reclaiming suspension device is equipped with an energy-harvesting hydraulic-electricity shock absorber (HESA). The composition and classification of HESA damping force were analyzed based on the basic working principle of HESA. Thus, the mathematical model of HESA damping force is deduced as a function of suspension dynamic speed and load current. A series of experiments were made to verify the reliability of the model. Based on the energy flow analysis of the suspension system, the net power flowing into the suspension is calculated. In order to minimize the vibration acceleration of the vehicle body, a novel net power control is proposed. The comparison result indicates the control effect of NPC is more significant than skyhook control, especially in the high excitation frequency. Also, the HERS bench test was carried out to verify the feasibility of NPC. The related results show that the maximum acceleration of the vibration is improved by 34.23 % with NPC on bump pavement excitation. And on B-class random road, the root mean square (RMS) value of the sprung mass vibration acceleration is reduced by 65 %. Furthermore, the influence of suspension dynamic velocity and deflection on the optimal control load current is obtained

    Implications of Gut Microbiota in Complex Human Diseases

    Get PDF
    Humans, throughout the life cycle, from birth to death, are accompanied by the presence of gut microbes. Environmental factors, lifestyle, age and other factors can affect the balance of intestinal microbiota and their impact on human health. A large amount of data show that dietary, prebiotics, antibiotics can regulate various diseases through gut microbes. In this review, we focus on the role of gut microbes in the development of metabolic, gastrointestinal, neurological, immune diseases and, cancer. We also discuss the interaction between gut microbes and the host with respect to their beneficial and harmful effects, including their metabolites, microbial enzymes, small molecules and inflammatory molecules. More specifically, we evaluate the potential ability of gut microbes to cure diseases through Fecal Microbial Transplantation (FMT), which is expected to become a new type of clinical strategy for the treatment of various diseases.Peer reviewe

    Cell-specific regulation of transcription of the malic enzyme gene. Characterization of the cis-acting elements that modulate nuclear T3 receptor activity.

    No full text
    Stimulation of malic enzyme transcription by triiodothyronine (T3) is robust ({dollar}\u3e{dollar}60-fold) in chick embryo hepatocytes, weak (5-fold) in chick embryo fibroblasts that stably overexpress the nuclear T3 receptor-{dollar}\\alpha,{dollar} and still weaker (1-fold) in chick embryo fibroblasts which contain nuclear T3 receptor levels that are similar to those of CEH. Directed by the DNase I hypersensitive regions in the malic enzyme gene, functional transfection and in vitro DNA-binding analyses were performed and four cis-acting elements were identified in the malic enzyme 5{dollar}\\sp\\prime{dollar}-flanking DNA. These four cis-acting elements confer differences in nuclear T3 receptor activity between chick embryo hepatocytes and chick embryo fibroblasts, they are located at {dollar}-{dollar}3895/{dollar}-{dollar}3890, {dollar}-{dollar}3761/{dollar}-{dollar}3744, {dollar}-{dollar}3703/{dollar}-{dollar}3686, and {dollar}-{dollar}3474/{dollar}-{dollar}2715 bp and overlap with DNase I hypersensitive sites that are observed in chromatin of chick embryo hepatocytes. Each element enhances T3 responsiveness of the malic enzyme promoter in chick embryo hepatocytes but has no effect on T3 responsiveness in chick embryo fibroblasts. Three of the cell-specific regulatory elements flank a previously identified DNA fragment {dollar}-{dollar}3889 to {dollar}-{dollar}3769 bp (Hodnett et. al., 1996) that contains one major and four minor T3 response elements. The cell-specific regulatory element at {dollar}-{dollar}3703/{dollar}-{dollar}3686 bp binds to the liver-enriched factor, CCAAT/enhancer-binding protein-{dollar}\\alpha,{dollar} whereas, cell-specific regulatory elements at {dollar}-{dollar}3895/{dollar}-{dollar}3890 and {dollar}-{dollar}3761/{dollar}-{dollar}3744 bp bind proteins of unknown identity. These data suggest that cell-specific differences in T3 responsiveness of the malic enzyme gene is mediated in large part by non-receptor proteins that augment the transcriptional activity of the nuclear T3 receptor in hepatocytes

    In Silico Screening of Novel TMPRSS2 Inhibitors for Treatment of COVID-19

    No full text
    COVID-19, a pandemic caused by the virus SARS-CoV-2, has spread globally, necessitating the search for antiviral compounds. Transmembrane protease serine 2 (TMPRSS2) is a cell surface protease that plays an essential role in SARS-CoV-2 infection. Therefore, researchers are searching for TMPRSS2 inhibitors that can be used for the treatment of COVID-19. As such, in this study, based on the crystal structure, we targeted the active site of TMPRSS2 for virtual screening of compounds in the FDA database. Then, we screened lumacaftor and ergotamine, which showed strong binding ability, using 100 ns molecular dynamics simulations to study the stability of the protein–ligand binding process, the flexibility of amino acid residues, and the formation of hydrogen bonds. Subsequently, we calculated the binding free energy of the protein–ligand complex by the MM-PBSA method. The results show that lumacaftor and ergotamine interact with residues around the TMPRSS2 active site, and reached equilibrium in the 100 ns molecular dynamics simulations. We think that lumacaftor and ergotamine, which we screened through in silico studies, can effectively inhibit the activity of TMPRSS2. Our findings provide a basis for subsequent in vitro experiments, having important implications for the development of effective anti-COVID-19 drugs

    Transdermal Drug Delivery Systems and Their Use in Obesity Treatment

    No full text
    Transdermal drug delivery (TDD) has recently emerged as an effective alternative to oral and injection administration because of its less invasiveness, low rejection rate, and excellent ease of administration. TDD has made an important contribution to medical practice such as diabetes, hemorrhoids, arthritis, migraine, and schizophrenia treatment, but has yet to fully achieve its potential in the treatment of obesity. Obesity has reached epidemic proportions globally and posed a significant threat to human health. Various approaches, including oral and injection administration have widely been used in clinical setting for obesity treatment. However, these traditional options remain ineffective and inconvenient, and carry risks of adverse effects. Therefore, alternative and advanced drug delivery strategies with higher efficacy and less toxicity such as TDD are urgently required for obesity treatment. This review summarizes current TDD technology, and the main anti-obesity drug delivery system. This review also provides insights into various anti-obesity drugs under study with a focus on the recent developments of TDD system for enhanced anti-obesity drug delivery. Although most of presented studies stay in animal stage, the application of TDD in anti-obesity drugs would have a significant impact on bringing safe and effective therapies to obese patients in the future

    An Optimal Algorithm for Energy Recovery of Hydraulic Electromagnetic Energy-Regenerative Shock Absorber

    No full text
    This paper presents a new kind of shock absorber, hydraulic electromagnetic energy-regenerative shock absorber (HESA), which can recover energy from vibration of vehicles. The road excitation frequency, load resistance and damping ratio are found to greatly affect the energy recovery of HESA. Based on a quarter-car model, the optimal load resistance and damping ratio for maximizing the energy-recyclable power are discussed. The results indicate that for any excitation frequency, the energy-recyclable power first increases then decreases with the load resistance increase, and the optimal load resistance is changeable as the excitation frequency changes.Moreover, the energy-recyclable power is more sensitive to excitation frequency than to damping ratio, and the ideal excitation frequency for energy recovery is around the wheel resonant frequency. The exploration of active control of HESA confirms that the damping force varies with the load current magnitude, and the active control can be realized by appropriate matching

    Akkermansia muciniphila Aspartic Protease Amuc_1434* Inhibits Human Colorectal Cancer LS174T Cell Viability via TRAIL-Mediated Apoptosis Pathway

    No full text
    Mucin2 (Muc2) is the main component of the intestinal mucosal layer and is highly expressed in mucous colorectal cancer. Previous studies conducted by our lab found that the recombinant protein Amuc_1434 (expressed in Escherichia coli prokaryote cell system, hereinafter termed Amuc_1434*), derived from Akkermansia muciniphila, can degrade Muc2. Thus, the main objective of this study was to explore the effects of Amuc_1434* on LS174T in colorectal cancer cells expressing Muc2. Results from this study demonstrated that Amuc_1434* inhibited the proliferation of LS174T cells, which was related to its ability to degrade Muc2. Amuc_1434* also blocked the G0/G1 phase of the cell cycle of LS174T cells and upregulated the expression of tumor protein 53 (p53), which is a cell cycle-related protein. In addition, Amuc_1434* promoted apoptosis of LS174T cells and increased mitochondrial ROS levels in LS174T cells. The mitochondrial membrane potential of LS174T cells was also downregulated by Amuc_1434*. Amuc_1434* can activate the death receptor pathway and mitochondrial pathway of apoptosis by upregulating tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL). In conclusion, our study was the first to demonstrate that the protein Amuc_1434* derived from Akkermansia muciniphila suppresses LS174T cell viability via TRAIL-mediated apoptosis pathway

    Parameters Analysis of Hydraulic-Electrical Energy Regenerative Absorber on Suspension Performance

    No full text
    To recycle the vibration energy of vehicles over rough roads, a hydraulic-electricity energy regenerative suspension (HEERS) was designed in the present work, and simulations were performed with focus on its performance. On the basis of the system principle, the mathematical model of hydraulic-electrical energy regenerative absorber (HEERA) and two degrees of freedom (DOF) suspension dynamic model were constructed. Using the model of HEERA, simulations on force-displacement and force-velocity characteristics were performed with a 1.67 Hz frequency and a sinusoidal input adopted. And then in combination with HEERA model and two DOF suspension models, simulations on the performance of HEERS also were carried out. Finally, the influences of charging pressure and volume of the accumulator, hydraulic motor displacement, orifice area of check valve, and inner diameter of hydraulic pipelines on the performance of HEERA and HEERS were investigated in depth. The simulation results indicated that (i) the damping characteristic of HEERA was coincident with the damping characteristics of traditional absorber; (ii) the most remarkable influencing factor on the performance of HEERS was the hydraulic motor displacement, followed by orifice area of check valve, inner diameter of pipelines, and charging pressure of accumulator, while the effects of charging volume of accumulator were quite limited
    corecore