250 research outputs found

    Exploring open-charm decay mode ΛcΛˉc\Lambda_c\bar{\Lambda}_c of charmonium-like state Y(4630)Y(4630)

    Full text link
    The newly observed X,Y,ZX, Y, Z exotic states are definitely not in the standard QQˉ′Q\bar Q' structures, thus their existence composes a challenge to our understanding on the fundamental principles of hadron physics. Therefore the studies on their decay patterns which are determined by the non-perturbative QCD will definitely shed light on the concerned physics. Generally the four-quark states might be in a molecular state or tetraquark or their mixture. In this work, we adopt the suggestion that Y(4630)Y(4630) is a charmonium-like tetraquark made of a diquark and an anti-diquark. If it is true, its favorable decay mode should be Y(4630)Y(4630) decaying into an open-charm baryon pair, since such a transition occurs via strong interaction and is super-OZI-allowed. In this work, we calculate the decay width of Y(4630)→ΛcΛˉcY(4630)\to\Lambda_c\bar{\Lambda}_c in the framework of the quark pair creation (QPC) model. Our numerical results on the partial width computed in the tetraquark configuration coincide with the Belle data within a certain error tolerance.Comment: 8 pages, 4 figures, 1 table. Accepted by Eur. Phys. J.

    Supermode-noise suppression using a nonlinear Fabry–Pérot filter in a harmonically mode-locked fiber ring laser

    Get PDF
    A simple efficient method for stabilizing a harmonically mode-locked fiber ring laser is proposed. In this method, a linear optical filter and a nonlinear Fabry–Pérot filter in which the refractive index is optical intensity dependent are located in the laser cavity. The linear filter is used to select a fixed lasing wavelength, and the Fabry–Pérot filter introduces a negative all-optical feedback mechanism that is able to suppress pulse-to-pulse amplitude fluctuations in the laser cavity. The scheme was experimentally demonstrated using a fiber Bragg grating as the linear filter and a laser diode biased below threshold as the nonlinear Fabry–Pérot, and stable harmonically mode-locked pulses with a supermode noise suppression ratio >55 dB were obtained

    Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams

    Get PDF
    This is the published version. ©Copyright 2012 Optical Society of AmericaWe report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity

    Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

    Get PDF
    We propose a simple Er-doped fiber laser configuration for achieving stable dual-wavelength oscillation at room temperature, in which a high birefringence fiber Bragg grating was used as the wavelength-selective component. Stable dual-wavelength oscillation at room temperature with a wavelength spacing of 0.23nm and mutually orthogonal polarisation states was achieved by utilising the polarisation hole burning effect. An amplitude variation of less than 0.7dB over 80s period was obtained for both wavelengths

    High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering

    Get PDF
    A novel high-frequency fiber Bragg grating (FBG) sensing interrogation system by using fiber Sagnac-loop-based microwave photonic filtering is proposed and experimentally demonstrated. By adopting the microwave photonic filtering, the wavelength shift of sensing FBG can be converted into amplitude variation of the modulated electronic radio-frequency (RF) signal. In the experiment, the strain applied onto the sensing FBG has been demodulated by measuring the intensity of the recovered RF signal, and by modulating the RF signal with different frequencies, different interrogation sensitivities can be achieved

    Dynamic Stiffness Method for Vibrations of Ship Structures

    Get PDF
    Initiated by the objective to address the dynamics of ship structures other than conventional finite element method, a dynamic stiffness method (DSM) is proposed systematically including that for three types of element models. A DSM element accounting for both in-plane and bending vibrations in flat rectangular plates is developed, which makes it possible for modeling wave conversion across junctions in built-up plates. In addition, a DSM element for stiffened plates is formulated, which considers all possible vibrations in plates and beams, i.e., bending, torsion, and extension motions. The third type of DSM plate element takes fluid loading into account, which is induced by vibrating plate. Finally, the proposed DSM method is extended to address vibration transmission in a built-up plate structure, which demonstrates the great potentials of DSM in application to more practical and more general engineering fields
    • …
    corecore