100 research outputs found

    Proposal of a phase-shift fiber Bragg grating as an optical differentiator and an optical integrator simultaneously

    Get PDF
    We show analytically and numerically that a practically realizable phase-shift fiber Bragg grating (PS-FBG) can function as a temporal first-order optical differentiator and a temporal first-order optical integrator at the same time. The PS-FBG working in reflection implements the differentiation and working in transmission implements the integration. We provide both the generalized conditions for a PS-FBG functioning as a first-order optical differentiator and a first-order optical integrator. The proposed PS-FBG can perform the time differential and integral of the complex envelope of an arbitrary input optical signal with high accuracy, respectively

    Novel Compact and low-Cost Ultraweak Fabry-Perot Interferometer as a Highly Sensitive Refractive Index Sensor

    Get PDF
    A novel compact refractive index (RI) sensor based on an ultra-weak intrinsic fiber Fabry-Perot interferometer (FPI) is proposed and demonstrated, which is simply fabricated by splicing a tiny section of thin-core fiber to a single-mode fiber. Such an FPI exhibits an average RI sensitivity of 240dB/RIU over a wide RI range of 1.3326-1.4305, with a maximum sensitivity of 1110.7dB/RIU at the RI of 1.4305. In addition, the FPI can also achieve the simultaneous measurement of the RI and temperature

    High-sensitivity and large-dynamic-range fiber refractometer based on composite-cavity Fabry-Perot structure

    Get PDF
    Most sensors have the tradeoff dilemma of high sensitivity and large dynamic range. We demonstrate here an all-fiber refractive index sensor based on a composite intrinsic Fabry-Perot interferometer (FPI), which possesses the co-existence advantages of high sensitivity and large dynamic range. Experimental trends are in good agreement with the theoretical predictions. The co-existence of high sensitivity and large dynamic range in a composite FPI is of great significance to practical refractive index measurement

    Ultra-sensitive refractive index sensor based on extremely simple femtosecond-laser-induced structure

    Get PDF
    We demonstrate here an extremely simple, compact and robust RI probe sensor based on a femtosecond-laser induced refractive-index-modified-dot (RIMD) fabricated near the end face of a single mode fiber. The RIMD and the fiber end face form a Fabry-Perot interferometer, which is highly sensitive to surrounding RI. The fabrication process of the RIMD involves only one step and takes ~0.1s, which is extremely short compared with other techniques. The proposed sensor exhibits an ultra-high sensitivity of ~2523.2 dB/RIU at an RI of 1.435, which is 1-2 orders of magnitude higher than that of the existing intensity-modulated RI sensors. Moreover, the proposed sensor has the distinct advantages of compact size (~50 µm), easy fabrication and no temperature cross-sensitivity. The advantages of the device make it a promising candidate for applications in designing highly sensitive sensors in biochemical and environmental measurement field

    High-sensitivity and large-dynamic-range refractive index sensors employing weak composite Fabry-Perot cavities

    Get PDF
    Most sensors face a common tradeoff between high sensitivity and large dynamic range. We demonstrate here an all-fiber refractometer based on a dual cavity Fabry-Perot interferometer (FPI), which possesses the advantage of both high sensitivity and large dynamic range. Since the two composite cavities have a large cavity length difference, one can observe both fine and coarse fringes, which correspond to the long cavity and short cavity, respectively. The short cavity FPI and the use of an intensity demodulation method, mean that the individual fine fringe dips correspond to a series of quasi-continuous highly sensitive zones for refractive index measurement. By calculating the parameters of the composite FPI, we find that the range of the ultra-sensitive zones can be considerably adjusted to suite the end requirements. The experimental trends are in good agreement with the theoretical predictions. The co-existence of high sensitivity and large dynamic range in a composite FPI is of great significance to practical RI measurements

    Strand Displacement Amplification for Multiplex Detection of Nucleic Acids

    Get PDF
    The identification of various targets such as bacteria, viruses, and other cells remains a prerequisite for point-of-care diagnostics and biotechnological applications. Nucleic acids, as encoding information for all forms of life, are excellent biomarkers for detecting pathogens, hereditary diseases, and cancers. To date, many techniques have been developed to detect nucleic acids. However, most of them are based on polymerase chain reaction (PCR) technology. These methods are sensitive and robust, but they require expensive instruments and trained personnel. DNA strand displacement amplification is carried out under isothermal conditions and therefore does not need expensive instruments. It is simple, fast, sensitive, specific, and inexpensive. In this chapter, we introduce the principles, methods, and updated applications of DNA strand displacement technology in the detection of infectious diseases. We also discuss how robust, sensitive, and specific nucleic acid detection could be obtained when combined with the novel CRISPR/Cas system

    Efficient postprocessing technique for fabricating surface nanoscale axial photonics microresonators with subangstrom precision by femtosecond laser

    Get PDF
    We demonstrated the subangstrom precise correction of surface nanoscale axial photonics (SNAP) micro-resonators by the femtosecond (fs) laser postprocessing technique for the first time. The internal stress can be induced by fs laser inscriptions in the fiber, causing nanoscale effective radius variation (ERV). However, the obtained ultraprecise fabrication usually undergoes multiple tries. Here, we propose a novel postprocessing technique based on the fs laser that significantly reduces the ERV errors and improves the fabrication precision without iterative corrections. The postexposure process is achieved at the original exposure locations using lower pulse energy than that in the initial fabrication process. The results show that the ERV is nearly proportional to the pulse energy of the postexposure process. The slope of the ERV versus the pulse energy is 0.07 Ã…/nJ. The maximum of the postprocessed ERV can reach 8.0 Ã…. The repeatability was experimentally verified by accomplishing the correction on three SNAP microresonators with the precision of 0.75 Ã…. The developed fabrication technique with fs laser enables SNAP microresonators with new breakthrough applications for optomechanics and filters

    Transmissive fiber Bragg grating-based delay line interferometer for RZ-OOK to NRZ-OOK format conversion

    Get PDF
    We propose a return-to-zero on-off keying (RZ-OOK) to non-return-to-zero (NRZ) OOK conversion scheme based on a transmissive phase-modulated fiber Bragg grating (PM-FBG). The PM-FBG has a spectrum similar to the combination of a delay line interferometer and a narrow band optical filter, which is designed and synthesized using numerical optimization algorithm. The coupling strength of the PM-FBG is almost uniform and the grating period varies along the fiber length according to the optimization method. The designed PM-FBG has been fabricated using advanced ultraviolet laser inscription technique. Experimental results show that such a PM-FBG can perform RZ-OOK to NRZ-OOK format conversion successfully

    Classification related to immunogenic cell death predicts prognosis, immune microenvironment characteristics, and response to immunotherapy in lower-grade gliomas

    Get PDF
    BackgroundImmunogenic cell death (ICD) is a form of cell death that elicits immune responses against the antigens found in dead or dying tumor cells. Growing evidence implies that ICD plays a significant role in triggering antitumor immunity. The prognosis for glioma remains poor despite many biomarkers being reported, and identifying ICD-related biomarkers is imminent for better-personalized management in patients with lower-grade glioma (LGG).Materials and methodsWe identified ICD-related differentially expressed genes (DEGs) by comparing gene expression profiles obtained across Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) cohorts. On the foundation of ICD-related DEGs, two ICD-related clusters were identified through consensus clustering. Then, survival analysis, functional enrichment analysis, somatic mutation analysis, and immune characteristics analysis were performed in the two ICD-related subtypes. Additionally, we developed and validated a risk assessment signature for LGG patients. Finally, we selected one gene (EIF2AK3) from the above risk model for experimental validation.Results32 ICD-related DEGs were screened, dividing the LGG samples from the TCGA database into two distinct subtypes. The ICD-high subgroup showed worse overall survival (OS), greater immune infiltration, more active immune response process, and higher expression levels of HLA genes than the ICD-low subgroup. Additionally, nine ICD-related DEGs were identified to build the prognostic signature, which was highly correlated with the tumor-immune microenvironment and could unambiguously be taken as an independent prognostic factor and further verified in an external dataset. The experimental results indicated that EIF2AK3 expression was higher in tumors than paracancerous tissues, and high-expression EIF2AK3 was enriched in WHO III and IV gliomas by qPCR and IHC, and Knockdown of EIF2AK3 suppressed cell viability and mobility in glioma cells.ConclusionWe established novel ICD-related subtypes and risk signature for LGG, which may be beneficial to improving clinical outcome prediction and guiding individualized immunotherapy
    • …
    corecore