20 research outputs found

    The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis

    Get PDF
    In contrast to microbially triggered inflammation, mechanisms promoting sterile inflammation remain poorly understood. Damage-associated molecular patterns (DAMPs) are considered key inducers of sterile inflammation following cell death, but the relative contribution of specific DAMPs, including high–mobility group box 1 (HMGB1), is ill defined. Due to the postnatal lethality of Hmgb1-knockout mice, the role of HMGB1 in sterile inflammation and disease processes in vivo remains controversial. Here, using conditional ablation strategies, we have demonstrated that epithelial, but not bone marrow–derived, HMGB1 is required for sterile inflammation following injury. Epithelial HMGB1, through its receptor RAGE, triggered recruitment of neutrophils, but not macrophages, toward necrosis. In clinically relevant models of necrosis, HMGB1/RAGE-induced neutrophil recruitment mediated subsequent amplification of injury, depending on the presence of neutrophil elastase. Notably, hepatocyte-specific HMGB1 ablation resulted in 100% survival following lethal acetaminophen intoxication. In contrast to necrosis, HMGB1 ablation did not alter inflammation or mortality in response to TNF- or FAS-mediated apoptosis. In LPS-induced shock, in which HMGB1 was considered a key mediator, HMGB1 ablation did not ameliorate inflammation or lethality, despite efficient reduction of HMGB1 serum levels. Our study establishes HMGB1 as a bona fide and targetable DAMP that selectively triggers a neutrophil-mediated injury amplification loop in the setting of necrosis

    Integrated profiling identifies CACNG3 as a prognostic biomarker for patients with glioma

    No full text
    Abstract Gliomas are the most common malignant primary brain tumors in adults with poor prognoses. The purpose of this study is to explore CACNG3 as a prognostic factor that is closely related to the progression and survival outcome of gliomas and to provide a potential new molecular target for the diagnosis and treatment of glioma patients. CACNG3 expression and related clinical data were collected from three major databases of The Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO). The CGGA dataset was used as a training set, and TCGA and GEO datasets obtained from the GEO database were used for validation. CACNG3 was expressed at low levels in the tumor group, and the overall survival (OS) in patients with low CACNG3 expression is shorter. Furthermore, CACNG3 expression was negatively associated with glioma grades, which was confirmed in the IHC results of clinical samples. The expression level of CACNG3 in the IDH1 wide-type group, 1p/19q non-codel group, and mesenchymal subtype group was significantly reduced, and the results showed that CACNG3 could serve as a biomarker for the mesenchymal molecular subtype. In addition, the univariate and multivariate analysis verified the prognostic value of CACNG3 in predicting the OS of gliomas of all grades. The results of functional annotation and pathway enrichment analysis of differently expressed genes(DEGs), showed that CACNG3 might affect the development of glioma by interfering with synaptic transmission. Moreover, temozolomide (TMZ), commonly used in the treatment of glioma, increased CACNG3 expression in a dose and time-dependent manner. Therefore, CACNG3 plays a vital role in the occurrence and development of gliomas and can serve as a potential biomarker for targeted therapy and further investigation in the future
    corecore