104 research outputs found
Identifying the best chalcogenide glass compositions for the application in mid-infrared waveguides
We prepared numbers of GeAsSe glasses and investigated their thermal stability and optical properties in order to search the best glasses with relatively high glass transition temperature Tg, strong structural stability, low optical loss and high optical nonlinearity. Through our systematical measurements, we concluded that the glasses with a mean coordination number around 2.45-2.5 are the best for the applications in photonics with Tg of 450K, low optical loss of 0.2dB/cm, high optical nonlinearity 7.5×10-14cm2/W and less photosensitivity. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
Immunogenicity and therapeutic effects of a Mycobacterium tuberculosis rv2190c DNA vaccine in mice
The Excel data file [FOLT] Figshare, [DOI: 10.6084/m9.figshare.4668148 and https://figshare.com/s/bd46c22986c673579bb6 ] includes all datasets supporting the conclusions of this article: IFN-ÃŽÅ‚ in spleen lymphocyte culture supernatants, IL-4 in spleen lymphocyte culture supernatants, CD4+ T cell subsets expressing intracellular IFN-ÃŽÅ‚ or IL-4, CFU in the lungs and spleens.. (XLS 143 kb
COVID-19 pandemic : SARS-CoV-2 specific vaccines and challenges, protection via BCG trained immunity, and clinical trials
Introduction: The coronavirus disease 2019 (COVID-19) pandemic continues to spread worldwide and vaccination remains the most effective approach to control COVID-19. Currently, at least ten COVID-19 vaccines have been authorized under emergency authorization. However, these vaccines still face many challenges. Areas covered: This study reviews the concept and mechanisms of trained immunity induced by the Bacille Calmette Guérin (BCG) vaccine and identifies questions that should be answered before the BCG vaccine could be used to combat COVID-19 pandemic. Moreover, we present for the first time the details of current BCG vaccine clinical trials, which are underway in various countries, to assess its effectiveness in combating the COVID-19 pandemic. Finally, we discuss the challenges of COVID-19 vaccines and opportunities for the BCG vaccine. The literature was found by searching the PubMed (https://pubmed.ncbi.nlm.nih.gov/), Web of Science (https://www.webofknowledge.com), Embase (https://www.embase.com), and CNKI (https://www.cnki.net/) databases. The date was set as the default parameter for each database. Expert opinion: The advantages of the BCG vaccine can compensate for the shortcomings of other COVID-19 vaccines. If the efficacy of the BCG vaccine against COVID-19 is confirmed by these clinical trials, the BCG vaccine may be essential to resolve the challenges faced by COVID-19 vaccines.acceptedVersionPeer reviewe
Geochemical characteristics and hydrocarbon generation potential of main source rocks in the Upper Triassic Xujiahe Formation, Sichuan Basin, China
In order to have a comprehensive understanding of the characterization and hydrocarbon generation potential of the source rock in the Upper Triassic Xujiahe Formation, Sichuan Basin, the geochemical data of more than 1,500 cuttings and 106 core samples were collected and analyzed. The T3x5 member of Xujiahe formation show the highest average TOC content (3.63%) followed by the T3x1+2 and T3x3 members. The TOC contents of different members show a general decreasing trend from the bottom to the top in Xujiahe formation. From the rock pyrolysis and kerogen δ13C values, the source rock trend to be kerogen type III with minor amounts of type Ⅱ2. According to the Ro values, the Xujiahe source rock shows high maturity in the northwest and low maturity in the southeast. Most of the source rock in T3x1+2 members are in high to overmature stage, while most of the source rock in the T3x3 and T3x5 member are in the mature to high mature stage. By comparing the burial history and hydrocarbon generation evolution history of source rocks in central and western Sichuan basin, it can be found that the sedimentation rate differences during the Cretaceous period is the main cause of the thermal evolution difference of the source rock. The gas generation intensity and quantity of different members are also compared. The T3x5 member show the highest gas generation potential followed by the T3x31 and the T3x1+2 members. In general, horizontally, the source rock of Xujiahe formation in Sichuan Basin is characterized by great thickness, high maturity, and high gas generation intensity in the northwest, which are gradually decrease to the southeast. Vertically, the T3x5 member show the highest gas generation content, which account for 39.6% of the total amount
RNA-seq Analysis of the BCG Vaccine in a Humanized Mouse Model
This study was aimed at screening differentially expressed genes (DEGs) and exploring the potential immune mechanism induced by the Bacillus Calmette-Guerin (BCG) vaccine in a humanized mouse model. Candidate DEGs between mice vaccinated with BCG or injected with PBS were identified through transcriptomics, and their biological functions, signaling pathways, and protein interaction networks were analyzed through bioinformatics. A total of 1035 DEGs were identified by transcriptomics: 398 up-regulated and 637 down-regulated. GO analysis indicated that these DEGs were significantly enriched in cell adhesion, oxygen transport, receptor complex, carbohydrate binding, serine-type endopeptidase activity, and peroxidase activity terms. KEGG analysis indicated that these DEGs were involved in the Rap1 signaling pathway, axon guidance, PI3K-Akt signaling pathway, natural killer cell mediated cytotoxicity, and cytokine-cytokine receptor interaction. Protein interaction network analysis demonstrated that the Myc, Vegfa, and Itgb3 proteins had the highest aggregation degree, aggregation coefficient, and connectivity. The BCG vaccine induced 1035 DEGs in humanized mice. Among them, the differentially expressed down-regulated genes myc and itgb3 involved in the PI3K-Akt signaling pathway may play essential roles in the immune mechanism of the BCG vaccine
Emissions of volatile organic compounds from reed diffusers in indoor environments
Reed diffusers are widely used as an indoor scenting source, in which aromatic components are thought to have sleep-improving and anxiety-relieving effects. Nevertheless, it is crucial to consider the potential health impacts associated with certain components in aromatherapy. This study aims to comprehensively explore the impact of reed diffusers on indoor air quality. We analyze the composition of gas-phase volatile organic compounds (VOCs) based on emission tests of a typical reed diffuser in a full-scale chamber. The observed top three VOCs are linalool acetate, linalool, and α-pinene, with linalool acetate accounting for 31.4%–43.6% of the total at 25°C. A physics-based model is then developed to characterize VOC emissions from a reed diffuser, and the key transport parameters are determined. Independent experiments validate the reliability of model parameters. Computational fluid dynamics simulations further demonstrate that reed diffuser position significantly impacts VOC distribution, which is essential for sophisticated exposure assessment
Research on photostability for infrared thin films of chalcogenide glasses
The photostability, photo-bleaching and photo-darkening behavior of twelve film samples of Ge-As-Se thin films with different chemical compositions are investigated when the films are exposed at irradiation of 656 nm by thermal evaporation deposition. Th
- …