114 research outputs found

    Administering plasmid DNA encoding tumor vessel-anchored IFN-α for localizing gene product within or into tumors

    Get PDF
    Tumor-targeted gene delivery has been intensively studied in the field of gene therapy, but no attention has been given to targeting the therapeutic gene products, which are transcribed and translated from the injected genes, into tumors. Targeting immune stimulatory gene products into tumors is the key to triggering tumor-specific CD8+ T-cell responses and reducing systemic toxicity. To target the gene products generated from the injected genes into tumors, genes encoding the tumor-targeted fusion gene product were generated and administered locally and systemically via electroporation. As anticipated, administration of a therapeutic gene encoding IFN-α and the tumor vessel-targeted peptide CDGRC fusion gene product minimizes the leakage of immunostimulatory cytokine from tumors into the blood circulation, increases the infiltration of CD8+ T cells into tumors, induces a high magnitude of cytotoxic T-cell lysis (CTL) activity, and reduces tumor vessel density. As a result, tumor growth was more significantly inhibited by administering the IFN-α-CDGRC gene than by administering the wild-type IFN-α gene. The same result was obtained with the systemic administration of the tumor-targeted IFN-α gene. This gene product-based tumor-targeted gene therapy approach could complement any other tumor-targeted gene delivery method for improving tumor-targeting efficiency

    Competitive DNA transfection formulation via electroporation for human adipose stem cells and mesenchymal stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adipose stem cells have a strong potential for use in cell-based therapy, but the current nucleofection technique, which relies on unknown buffers, prevents their use.</p> <p>Results</p> <p>We developed an optimal nucleofection formulation for human adipose stem cells by using a three-step method that we had developed previously. This method was designed to determine the optimal formulation for nucleofection that was capable of meeting or surpassing the established commercial buffer (Amaxa), in particular for murine adipose stem cells. By using this same buffer, we determined that the same formulation yields optimal transfection efficiency in human mesenchymal stem cells.</p> <p>Conclusions</p> <p>Our findings suggest that transfection efficiency in human stem cells can be boosted with proper formulation.</p

    Development of Polysorbate 80/Phospholipid mixed micellar formation for docetaxel and assessment of its in vivo distribution in animal models

    Get PDF
    Docetaxel (DTX) is a very important member of taxoid family. Despite several alternative delivery systems reported recently, DTX formulated by Polysorbate 80 and alcohol (TaxotereÂź) is still the most frequent administration in clinical practice. In this study, we incorporated DTX into Polysorbate 80/Phospholipid mixed micelles and compared its structural characteristics, pharmacokinetics, biodistribution, and blood compatibility with its conventional counterparts. Results showed that the mixed micelles loaded DTX possessed a mean size of approximately 13 nm with narrow size distribution and a rod-like micelle shape. In the pharmacokinetics assessment, there was no significant difference between the two preparations (P > 0.05), which demonstrated that the DTX in the two preparations may share a similar pharmacokinetic process. However, the Polysorbate 80/Phospholipid mixed micelles can increase the drug residence amount of DTX in kidney, spleen, ovary and uterus, heart, and liver. The blood compatibility assessment study revealed that the mixed micelles were safe for intravenous injection. In conclusion, Polysorbate 80/Phospholipid mixed micelle is safe, can improve the tumor therapeutic effects of DTX in the chosen organs, and may be a potential alternative dosage form for clinical intravenous administration of DTX

    Direct hydrodeoxygenation of raw woody biomass into liquid alkanes

    Get PDF
    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO(4) catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbO(x) species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes

    Misdiagnosed psychiatric manifestations in a rare disease: a case report of secondary anxiety syndrome in Cushing’s disease

    Get PDF
    Diagnosing and treating secondary psychiatric symptoms with accuracy can be challenging in clinical settings. In this case study, we report on a female patient with Cushing’s disease who was misdiagnosed with anxiety disorder during her first psychiatric visit. Following initial ineffective psychiatric intervention, unexplained hypokalemia, and hypothyroidism, the patient visited the endocrinology clinic and was diagnosed with Cushing’s disease. During the medical and surgical procedures that followed, high doses of psychotropic medication were continued to treat persisting anxiety. After discharge, the patient developed autonomic dysfunction and impaired consciousness. Upon readmission, serotonin syndrome due to inappropriate psychiatric medication was diagnosed. The management of secondary psychiatric syndromes must be adapted to changes in the patient’s primary condition, which necessitates interdisciplinary collaboration in general hospital settings

    High Prevalence of Extended-Spectrum Beta Lactamases among Salmonella enterica Typhimurium Isolates from Pediatric Patients with Diarrhea in China

    Get PDF
    We investigated the extended-spectrum beta lactamases among 62 Salmonella enterica Typhimurium isolates recovered from children with diarrhea in a Chinese pediatric hospital. A large proportion of S. enterica Typhimurium isolates were resistant to multiple antimicrobial agents, including ampicillin (90.3%), tetracycline (80.6%), trimethoprim/sulfamethoxazole (74.2%), chloramphenicol (66.1%), cefotaxime (27.4%). Forty-nine (79.0%) of S. enterica Typhimurium isolates were positive for blaTEM-1b and resistant to ampicillin. Thirteen S. enterica Typhimurium isolates (21.0%) were positive for blaCTX-M-1-group and blaCTX-M-9-group, and all isolates harboring blaCTX-M genes were positive for ISEcp1. Two main clones (PFGE type A and D) accounted for nearly 70% of S. enterica Typhimurium isolates, and 7 CTX-M-producing isolates belonged to PFGE type D. Collectively, our data reveal multi-drug resistance and a high prevalence of extended spectrum beta lactamases among S. enterica Typhimurium isolates from children in China. In addition, we report the first identification of blaCTX-M-55 within Salmonella spp. Our data also suggest that clonal spread is responsible for the dissemination of S. enterica Typhimurium isolates
    • 

    corecore