54 research outputs found

    Zinc Finger-Homeodomain Transcriptional Factors (ZHDs) in Upland Cotton (Gossypium hirsutum): Genome-Wide Identification and Expression Analysis in Fiber Development

    Get PDF
    Zinc finger-homeodomain (ZHD) genes encode a family of plant-specific transcription factors that not only participate in the regulation of plant growth and development but also play an important role in the response to abiotic stress. The ZHD gene family has been studied in several model plants, including Solanum lycopersicum, Zea mays, Oryza sativa, and Arabidopsis thaliana. However, a comprehensive study of the genes of the ZHD family and their roles in fiber development and pigmentation in upland cotton has not been completed. To address this gap, we selected a brown fiber cultivar for our study; brown color in cotton is one of the most desired colors in the textile industry. The natural colored fibers require less processing and little dying, thereby eliminating dye costs and chemical residues. Using bioinformatics approaches, we identified 37 GhZHD genes from Gossypium hirsutum and then divided these genes into seven groups based on their phylogeny. The GhZHD genes were mostly conserved in each subfamily with minor variations in motif distribution and gene structure. These genes were largely distributed on 19 of the 26 upland cotton chromosomes. Among the Gossypium genomes, the paralogs and orthologs of the GhZHD genes were identified and further characterized. Furthermore, among the paralogs, we observed that the ZHD family duplications in Gossypium genomes (G. hirsutum, G. arboreum, and G. raimondii) were probably derived from segmental duplication or genome-wide duplication (GWD) events. Through a combination of qRT-PCR and proanthocyanidins (PA) accumulation analyses in brown cotton fibers, we concluded that the candidate genes involved in early fiber development and fiber pigment synthesis include the following: GhZHD29, GhZHD35, GhZHD30, GhZHD31, GhZHD11, GhZHD27, GhZHD18, GhZHD15, GhZHD16, GhZHD22, GhZHD6, GhZHD33, GhZHD13, GhZHD5, and GhZHD23. This study delivers insights into the evolution of the GhZHD genes in brown cotton, serves as a valuable resource for further studies, and identifies the conditions necessary for improving the quality of brown cotton fiber

    Comparative genomic analysis of the IDD genes in five Rosaceae species and expression analysis in Chinese white pear (Pyrus bretschneideri)

    Get PDF
    The INDETERMINATE DOMAIN (IDD) gene family encodes hybrid transcription factors with distinct zinc finger motifs and appears to be found in all higher plant genomes. IDD genes have been identified throughout the genomes of the model plants Arabidopsis thaliana and Oryza sativa, and the functions of many members of this gene family have been studied. However, few studies have investigated the IDD gene family in Rosaceae species (among these species, a genome-wide identification of the IDD gene family has only been completed in Malus domestica). This study focuses on a comparative genomic analysis of the IDD gene family in five Rosaceae species (Pyrus bretschneideri, Fragaria vesca, Prunus mume, Rubus occidentalis and Prunus avium). We identified a total of 68 IDD genes: 16 genes in Chinese white pear, 14 genes in F. vesca, 13 genes in Prunus mume, 14 genes in R. occidentalis and 11 genes in Prunus avium. The evolution of the IDD genes in these five Rosaceae species was revealed by constructing a phylogenetic tree, tracking gene duplication events, and performing a sliding window analysis and a conserved microsynteny analysis. The expression analysis of different organs showed that most of the pear IDD genes are found at a very high transcription level in fruits, flowers and buds. Based on our results with those obtained in previous research, we speculated that PbIDD2 and PbIDD8 might participate in flowering induction in pear. A temporal expression analysis showed that the expression patterns of PbIDD3 and PbIDD5 were completely opposite to the accumulation pattern of fruit lignin and the stone cell content. The results of the composite phylogenetic tree and expression pattern analysis indicated that PbIDD3 and PbIDD5 might be involved in the metabolism of lignin and secondary cell wall (SCW) formation. In summary, we provide basic information about the IDD genes in five Rosaceae species and thereby provide a theoretical basis for studying the function of these IDD genes

    The workload change and depression among emergency medical staff after the open policy during COVID-19: a cross-sectional survey in Shandong, China

    Get PDF
    IntroductionIn the middle of December 2022, the Chinese government adjusted the lockdown policy on coronavirus disease 2019 (COVID-19), a large number of infected patients flooded into the emergency department. The emergency medical staff encountered significant working and mental stress while fighting the COVID-19 pandemic. We aimed to investigate the workload change, and the prevalence and associated factors for depression symptoms among emergency medical staff after the policy adjustment.MethodsWe conducted a cross-sectional online survey of emergency medical staff who fought against COVID-19 in Shandong Province during January 16 to 31, 2023. The respondents’ sociodemographic and work information were collected, and they were asked to complete the 9-item Patient Health Questionnaire (PHQ-9) then. Univariate and multivariate logistic regression analyses were applied to identify the potential associated factors for major depression.ResultsNine hundred and sixteen emergency medical personnel from 108 hospitals responded to this survey. The respondents’ weekly working hours (53.65 ± 17.36 vs 49.68 ± 14.84) and monthly night shifts (7.25 ± 3.85 vs 6.80 ± 3.77) increased after the open policy. About 54.3% of the respondents scored more than 10 points on the PHQ-9 standardized test, which is associated with depressive symptoms. In univariate analysis, being doctors, living with family members aged ≤16 or ≥ 65 years old, COVID-19 infection and increased weekly working hours after the open policy were significantly associated with a PHQ-9 score ≥ 10 points. In the multivariate analysis, only increased weekly working hours showed significant association with scoring ≥10 points.ConclusionEmergency medical staff’ workload had increased after the open policy announcement, which was strongly associated with a higher PHQ-9 scores, indicating a very high risk for major depression. Emergency medical staff working as doctors or with an intermediate title from grade-A tertiary hospitals had higher PHQ-9 scores, while COVID-19 infection and weekly working hours of 60 or more after the open policy were associated with higher PHQ-9 scores for those from grade-B tertiary hospitals. Hospital administrators should reinforce the importance of targeted emergency medical staff support during future outbreaks

    QTL Detection for Kernel Size and Weight in Bread Wheat (Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map

    Get PDF
    High-density genetic linkage maps are essential for precise mapping quantitative trait loci (QTL) in wheat (Triticum aestivum L.). In this study, a high-density genetic linkage map consisted of 6312 SNP and SSR markers was developed to identify QTL controlling kernel size and weight, based on a recombinant inbred line (RIL) population derived from the cross of Shixin828 and Kenong2007. Seventy-eight putative QTL for kernel length (KL), kernel width (KW), kernel diameter ratio (KDR), and thousand kernel weight (TKW) were detected over eight environments by inclusive composite interval mapping (ICIM). Of these, six stable QTL were identified in more than four environments, including two for KL (qKL-2D and qKL-6B.2), one for KW (qKW-2D.1), one for KDR (qKDR-2D.1) and two for TKW (qTKW-5A and qTKW-5B.2). Unconditional and multivariable conditional QTL mapping for TKW with respect to TKW component (TKWC) revealed that kernel dimensions played an important role in regulating the kernel weight. Seven QTL-rich genetic regions including seventeen QTL were found on chromosomes 1A (2), 2D, 3A, 4B and 5B (2) exhibiting pleiotropic effects. In particular, clusters on chromosomes 2D and 5B possessing significant QTL for kernel-related traits were highlighted. Markers tightly linked to these QTL or clusters will eventually facilitate further studies for fine mapping, candidate gene discovery and marker-assisted selection (MAS) in wheat breeding

    Improved Adaptive Backstepping Sliding Mode Control of Static Var Compensator

    No full text
    The stability of a single machine infinite bus system with a static var compensator is proposed by an improved adaptive backstepping algorithm, which includes error compensation, sliding mode control and a κ -class function. First, storage functions of the control system are constructed based on modified adaptive backstepping sliding mode control and Lyapunov methods. Then, adaptive backstepping method is used to obtain nonlinear controller and parameter adaptation rate for static var compensator system. The results of simulation show that the improved adaptive backstepping sliding mode variable control based on error compensation is effective. Finally, we get a conclusion that the improved method differs from the traditional adaptive backstepping method. The improved adaptive backstepping sliding mode variable control based on error compensation method preserves effective non-linearities and real-time estimation of parameters, and this method provides effective stability and convergence

    Genome-Wide Analysis Characterization and Evolution of SBP Genes in Fragaria vesca, Pyrus bretschneideri, Prunus persica and Prunus mume

    Get PDF
    The SQUAMOSA promoter binding protein (SBP)-box proteins are plant-specific transcriptional factors in plants. SBP TFs are known to play important functions in a diverse development process and also related in the process of evolutionary novelties. SBP gene family has been characterized in several plant species, but little is known about molecular evolution, functional divergence and comprehensive study of SBP gene family in Rosacea. We carried out genome-wide investigations and identified 14, 32, 17, and 17 SBP genes from four Rosacea species (Fragaria vesca, Pyrus bretschneideri, Prunus persica and Prunus mume, respectively). According to phylogenetic analysis arranged the SBP protein sequences in seven groups. Localization of SBP genes presented an uneven distribution on corresponding chromosomes of Rosacea species. Our analyses designated that the SBP genes duplication events (segmental and tandem) and divergence. In addition, due to highly conserved structure pattern of SBP genes, recommended that highly conserved region of microsyneteny in the Rosacea species. Type I and II functional divergence was detected among various amino acids in SBP proteins, while there was no positive selection according to substitutional model analysis using PMAL software. These results recommended that the purifying selection might be leading force during the evolution process and dominate conservation of SBP genes in Rosacea species according to environmental selection pressure analysis. Our results will provide basic understanding and foundation for future research insights on the evolution of the SBP genes in Rosacea

    iTRAQ-Based Identification of Proteins Related to Lignin Synthesis in the Pear Pollinated with Pollen from Different Varieties

    No full text
    Most pears in Anhui Province are a kind of self-incompatible fruit whose quality is strongly influenced by the male pollen. The proteomic variation of Dangshan Su pollinated by different varieties was analysed using the isobaric tag for relative and absolute quantitation (iTRAQ) to investigate the effect of pollination by different varieties on the pear lignin pathway. Among the 3980 proteins identified from the two samples, 139 proteins were identified as differentially expressed proteins (DEPs). Of these proteins, laccase-4 (LAC4), was found to be related with lignin synthesis, and β-glucosidase 15 (BGLU15) and peroxidase 47 (PER47) were involved in the phenylpropanoid pathway. Moreover, the lignin and stone cell contents were lower in DW (Dangshan Su pollinated by Wonhwang) than those in DJ (Dangshan Su pollinated by Jingbaili). The effect of pollination on the synthesis of lignin through the regulation of the expression of PER47, BGLU15 and LAC4 ultimately affects the formation of stone cells and the fruit quality. We report for the first time that different pollinations influence the protein expression profile in the Dangshan Su pear, and this result provides some new epididymal targets for regulating the synthesis of lignin, regulating the content of stone cells and improving the quality of the pears

    Effects of Different Pollens on Primary Metabolism and Lignin Biosynthesis in Pear

    No full text
    To investigate the effect of pollination on the fruit quality of ‘Dangshan Su’ pear, ‘Dangshan Su’ was fertilized by the pollen of ‘Wonhwang’ (Pyrus pyrifolia Nakai.) (DW) and ‘Jingbaili’ (Pyrus ussuriensis Maxim.) (DJ). The analysis of primary metabolites was achieved through untargeted metabolomics, and the quantitative analysis of intermediate metabolites of lignin synthesis was undertaken using targeted metabolomics. The untargeted metabolomics analysis was performed via gas chromatography-mass spectrometry (GC-MS). The targeted metabolomics analysis was performed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) under the multiple reaction monitoring (MRM) mode. The results showed that the metabolite content was significantly different between DW and DJ. Compared with that in DJ, the sugar and amino acid content in DW was higher and the fatty acid content was lower at 47 days after pollination (DAPs), and the sugar, amino acid, and fatty acid content in DW was lower at 63 DAPs. The intermediate metabolites of lignin synthesis were analyzed using the orthogonal partial least squares discriminant analysis (OPLS-DA) model, and the differential metabolites at 47 DAPs were p-coumaric acid, ferulic acid, sinapaldehyde, coniferyl alcohol, and sinapyl alcohol. The differential significant metabolite at 63 DAPs was p-coumaric acid. At 47 DAPs and 63 DAPs, the p-coumaric acid level was significantly different, and the p-coumaric acid content was positively correlated with lignin synthesis. The pollination pollen affects the quality of ‘Dangshan Su’ pear fruit through regulation of the sugar, amino acid, and fatty acid content; at the same time, regulating the levels of intermediate metabolites of lignin synthesis, especially the p-coumaric acid content, to affect lignin synthesis ultimately affects the stone cell content and improves the quality of the pears

    Comparative genomic analysis of the PAL genes in five Rosaceae species and functional identification of Chinese white pear

    No full text
    Phenylalanine ammonia lyase (PAL) plays an important role in the biosynthesis of secondary metabolites regulating plant growth response. To date, the evolutionary history of the PAL family in Rosaceae plants remains unclear. In this study, we identified 16 PAL homologous genes in five Rosaceae plants (Pyrus bretschneideri, Fragaria vesca, Prunus mume, Prunus persica, and Malus × domestica). We classified these PALs into three categories based on phylogenetic analysis, and all PALs were distributed on 13 chromosomes. We tracked gene duplication events and performed sliding window analysis. These results revealed the evolution of PALs in five Rosaceae plants. We predicted the promoter of the PbPALs by PLANT CARE online software, and found that the promoter region of both PbPAL1 and PbPAL3 have at least one AC element. The results of qRT-PCR analysis found that PbPAL1 and PbPAL2 were highly expressed in the stems and roots, while expression level of PbPAL3 was relatively low in different tissues. The expression of PbPAL1 and PbPAL2 increased firstly and then decreased at different developmental periods of pear fruit. Among them, the expression of PbPAL1 reached the highest level 55 days after flowering. Three PbPALs were induced by abiotic stress to varying degrees. We transfected PbPAL1 and PbPAL2 into Arabidopsis thaliana, which resulted in an increase in lignin content and thickening of the cell walls of intervascular fibres and xylem cells. In summary, this research laid a foundation for better understanding the molecular evolution of PALs in five Rosaceae plants. Furthermore, the present study revealed the role of PbPALs in lignin synthesis, and provided basic data for regulating lignin synthesis and stone cells development in pear plants

    Comparative genomic analysis of the PKS genes in five species and expression analysis in upland cotton

    No full text
    Plant type III polyketide synthase (PKS) can catalyse the formation of a series of secondary metabolites with different structures and different biological functions; the enzyme plays an important role in plant growth, development and resistance to stress. At present, the PKS gene has been identified and studied in a variety of plants. Here, we identified 11 PKS genes from upland cotton (Gossypium hirsutum) and compared them with 41 PKS genes in Populus tremula, Vitis vinifera, Malus domestica and Arabidopsis thaliana. According to the phylogenetic tree, a total of 52 PKS genes can be divided into four subfamilies (I–IV). The analysis of gene structures and conserved motifs revealed that most of the PKS genes were composed of two exons and one intron and there are two characteristic conserved domains (Chal_sti_synt_N and Chal_sti_synt_C) of the PKS gene family. In our study of the five species, gene duplication was found in addition to Arabidopsis thaliana and we determined that purifying selection has been of great significance in maintaining the function of PKS gene family. From qRT-PCR analysis and a combination of the role of the accumulation of proanthocyanidins (PAs) in brown cotton fibers, we concluded that five PKS genes are candidate genes involved in brown cotton fiber pigment synthesis. These results are important for the further study of brown cotton PKS genes. It not only reveals the relationship between PKS gene family and pigment in brown cotton, but also creates conditions for improving the quality of brown cotton fiber
    • …
    corecore