313 research outputs found

    GaitASMS: Gait Recognition by Adaptive Structured Spatial Representation and Multi-Scale Temporal Aggregation

    Full text link
    Gait recognition is one of the most promising video-based biometric technologies. The edge of silhouettes and motion are the most informative feature and previous studies have explored them separately and achieved notable results. However, due to occlusions and variations in viewing angles, their gait recognition performance is often affected by the predefined spatial segmentation strategy. Moreover, traditional temporal pooling usually neglects distinctive temporal information in gait. To address the aforementioned issues, we propose a novel gait recognition framework, denoted as GaitASMS, which can effectively extract the adaptive structured spatial representations and naturally aggregate the multi-scale temporal information. The Adaptive Structured Representation Extraction Module (ASRE) separates the edge of silhouettes by using the adaptive edge mask and maximizes the representation in semantic latent space. Moreover, the Multi-Scale Temporal Aggregation Module (MSTA) achieves effective modeling of long-short-range temporal information by temporally aggregated structure. Furthermore, we propose a new data augmentation, denoted random mask, to enrich the sample space of long-term occlusion and enhance the generalization of the model. Extensive experiments conducted on two datasets demonstrate the competitive advantage of proposed method, especially in complex scenes, i.e. BG and CL. On the CASIA-B dataset, GaitASMS achieves the average accuracy of 93.5\% and outperforms the baseline on rank-1 accuracies by 3.4\% and 6.3\%, respectively, in BG and CL. The ablation experiments demonstrate the effectiveness of ASRE and MSTA. The source code is available at https://github.com/YanSungithub/GaitASMS

    How do childhood abuse and neglect affect prosocial behavior? The mediating roles of different empathic components

    Get PDF
    BackgroundChildhood abuse and neglect are typically considered as two different forms of maltreatment. Previous international studies have found differential effects of abuse and neglect on prosocial behavior, but this and the mediating pathway underlying these associations have not been examined in a Chinese sample. Our study aims to examine the effects of childhood abuse and neglect on prosocial behavior in Chinese participants and test the unique mediating roles of different empathic components in these associations.MethodsA total of 1,569 young adults (average age = 18.17 years) were recruited from a college that enrolls students from all provinces of China. Participants completed a series of questionnaires, including the Childhood Trauma Questionnaire, Interpersonal Reactivity Index, and Prosocial Tendencies Measure. Path analysis was conducted to determine the mediational relationships.ResultsEmotional neglect had significant direct effect on prosocial behavior (β = −0.108, p < 0.001), and could also impact prosocial behavior through the mediating roles of perspective-taking and empathic concern (effect size = −0.091 and −0.097 respectively, p < 0.001). Emotional abuse affected prosocial behavior only through personal distress (effect size = −0.072, p < 0.001). Physical abuse, sexual abuse and physical neglect have little effect on prosocial behavior and empathy.ConclusionChildhood abuse and neglect have distinct influences on prosocial behavior. Emotional abuse and emotional neglect affect prosocial behavior through distinct pathways. This conclusion could help to establish precise interventions for improving prosocial behavior in maltreated individuals

    Optimization of Frying Technology of Agaricus bisporus Recombinant Rice and Analysis of Its Flavor Components

    Get PDF
    In order to improve the flavor and nutritional value of stir-fried rice, this study used Agaricus bisporus powder and indica rice powder as raw materials, and obtained Agaricus bisporus stir-fried rice by extrusion granulation and frying. Response surface methodology was used to optimize the technological formula, and then the nutritional components and flavor components were analyzed. The results showed that the best formula of stir-fried rice with Agaricus bisporus was as follows: The frying temperature 170 ℃, the frying time 79 s, and the addition of Agaricus bisporus powder 5.90%. On this basis, the comprehensive score of Agaricus bisporus stir-fried rice was 86.80±0.47, which was close to the theoretical prediction. The nutritional results showed that compared with the blank stir-fried rice, the total starch content of the stir-fried rice with Agaricus bisporus decreased significantly (P<0.05), while the contents of protein, fat and dietary fiber increased significantly (P<0.05), and the total amino acid content was also increased. Glutamic acid, aspartic acid and arginine made great contributions to the formation of the unique flavor of the stir-fried rice with Agaricus bisporus. In addition, the results of electronic nose and gas chromatography-ion mobility spectrometry showed that 53 volatile flavor substances including aldehydes, esters, ketones, alcohols, furans and acids were detected in blank recombinant rice, blank stir-fried rice, Agaricus bisporus recombinant rice and Agaricus bisporus stir-fried rice. Compared with blank recombinant rice, the relative contents of ketones and furans in blank stir-fried rice increased. Compared with blank stir-fried rice, the relative contents of aldehydes and ketones in Agaricus bisporus stir-fried rice increased. Compared with Agaricus bisporus recombinant rice, the relative contents of ketones, esters and furans in Agaricus bisporus stir-fried rice increased

    Preparation and Application of Antioxidative Chitosan/Soybean Protein Isolate Composite Edible Membrane

    Get PDF
    Taking chitosan (CS) and soybean protein isolate (SPI) as composite membrane substrates and natural antioxidants as active substances, an edible active preservative film with inhibitory effect on lipid oxidation was developed. After optimizing the type and concentration of antioxidants through the mechanical properties, microstructure, physical properties, and antioxidant properties of the composite membrane, the preservation effect of the composite membrane on walnut oil was investigated. Results showed that, eight antioxidants significantly improved the oxygen-barrier ability of the composite membranes (P<0.05). Especially,the peroxide value of walnut oil was reduced by about 80% and maintained excellent mechanical properties with the addition of astaxanthin, grape seed extracts and vitamin C. When the addition of astaxanthin was 0.3%, the composite membrane exhibits the best performance, then the tensile strength, elongation at break, DPPH free radical scavenging capacity and water vapor permeability of the composite membrane were 6.546 MPa, 69.962%, 80.1%, 1.21 g∙mm/m2∙h∙kPa, respectively. Scanning electron microscopy revealed that the surface of the membrane was smooth, regular and uniform. Fourier transform infrared spectroscopy showed that membrane-forming materials were extremely compatible. The differential scanning calorimeter analysis showed that the composite membrane had the highest thermal enthalpy, reaching 233.940 J/g, with the best thermal stability. When the walnut oil was coated with a composite membrane containing astaxanthin, the oil’s peroxide value was reduced by 81.8%, conjugated diene by 44.4% and conjugated triene values by 66.4% compared to the control. Chitosan/soybean protein isolate composite membrane with astaxanthin significantly delayed the process of walnut oil oxidation

    Characterization of ultra-deeply buried middle Triassic Leikoupo marine carbonate petroleum system (!) in the Western Sichuan depression, China

    Get PDF
    Ultra-deeply buried (&gt;5000 m) marine carbonate reservoirs have gradually become important exploration targets. This research focuses on providing an understanding of the basic elements of the ultra-deeply buried Middle Triassic Leikoupo marine carbonate petroleum system within the Western Sichuan Depression, China. Comprehensive analyses of organic geochemistry, natural gas, and C–H–He–Ne–Ar isotope compositions suggest that the reservoir is charged with compound gases from four source rock units including the Permian Longtan, Middle Triassic Leikoupo, Late Triassic Maantang and Xiaotangzi formations. Approximately a 50-m thick outcrop and 100-m length of drilling cores were examined in detail, and 108 samples were collected from six different exploration wells in order to conduct petrographic and petrophysical analyses. Thin-section and scanning electron microscope (SEM) observations, helium porosity and permeability measurements, mercury injection capillary pressure (MICP) analysis, and wire-line logging (5,500–6,900 m) indicate that the reservoir lithologies include argillaceous algal limestones, dolograinstones, crystalline dolostones, and microbially-derived stromatolitic and thrombolitic dolostones. Reservoir properties exhibit extreme heterogeneity due to different paleogeographic environmental controls and mutual interactions between constructive (e.g., epigenetic paleo-karstification, burial dissolution, structural movement, pressure-solution and dolomitization) and destructive (e.g., physical/chemical compaction, cementation, infilling, recrystallization, and replacement) diagenetic processes. An unconformity-related epigenetic karstification zone was identified in the uppermost fourth member of the Leikoupo Formation, which has developed secondary solution-enhanced pores, vugs, and holes that resulted in higher porosity (1.8–14.2%) and permeability (0.2–7.7 mD). The homogeneity and tightness of the reservoir increases with depth below the unconformity, and it is characterized by primary intergranular and intracrystalline pores, solution pores, fractures, stylolites, and micropores with a lower helium porosity (0.6–4.1%) and permeability (0.003–125.2 mD). Regional seals consist of the Late Triassic Xujiahe Formation, comprised of ~300 m of mudstones that are overlain by ~5,000-m thick of Jurassic to Quaternary continental argillaceous overburden rocks. Effective traps are dominated by a combination of structural-stratigraphic types. Paleo- reservoir crude oil cracking, wet-gases, and dry-gases from three successive hydrocarbon generation processes supplied the sufficient hydrocarbon resources. The homogenization temperatures of the hydrocarbon-associated aqueous fluid inclusions range from 98–130 °C and 130–171 °C, which suggests hydrocarbon charging occurred between 220–170 Ma and 130–90 Ma, respectively. One-dimensional basin evolution models combined with structural geologic and seismic profiles across wells PZ1-XQS1-CK1-XCS1-TS1 show that hydrocarbon migration and entrapment mainly occurred via the unconformity and interconnected fault-fracture networks with migration and charging driven by formation overpressure, abnormal fluid flow pressure, and buoyancy forces during the Indosinian and Yanshanian orogenies, with experiencing additional transformation occurring during the Himalayan orogeny. The predicted estimated reserves reached ~300 × 109 m3. The results provide excellent scientific implications for similar sedimentary basin studies, it is believed that abundant analogous deeply buried marine carbonate hydrocarbon resources yet to be discovered in China and elsewhere worldwide in the near future

    Disrupted Functional Network Topology in Children and Adolescents With Post-traumatic Stress Disorder

    Get PDF
    Neuroimaging studies in children and adolescents with post-traumatic stress disorder (PTSD) have focused on abnormal structures and the functionality of a few individual brain regions. However, little is known about alterations to the topological organization of whole-brain functional networks in children and adolescents with PTSD. To this end, we investigated the topological properties of brain functional networks derived from resting-state functional magnetic resonance imaging (r-fMRI) in patients suffering from PTSD. The r-fMRI data were obtained from 10 PTSD patients and 16 trauma-exposed non-PTSD subjects. Graph theory analysis was used to investigate the topological properties of the two groups, and group comparisons of topological metrics were performed using nonparametric permutation tests. Both the PTSD and non-PTSD groups showed the functional brain network to have a small-world architecture. However, the PTSD group exhibited alterations in global properties characterized by higher global efficiency, lower clustering coefficient, and characteristic path length, implying a shift toward randomization of the networks. The PTSD group also showed increased nodal centralities, predominately in the left middle frontal gyrus, caudate nucleus, and hippocampus, and decreased nodal centralities in the left anterior cingulate cortex, left paracentral lobule, and bilateral thalami. In addition, the clustering coefficient and nodal betweenness of the left paracentral lobule were found to be negatively and positively correlated with the re-experiencing and hyper-arousal symptoms of PTSD respectively. The findings of disrupted topological properties of functional brain networks may help to better understand the pathophysiological mechanism of PTSD in children and adolescents

    Aβ-40 Y10F Increases βfibrils Formation but Attenuates the Neurotoxicity of Amyloid-β Peptide

    Get PDF
    Alzheimer’s disease (AD) is characterized by the abnormal aggregation of amyloid-β peptide (Aβ) in extracellular deposits known as senile plaques. The tyrosine residue (Tyr-10) is believed to be important in Aβ-induced neurotoxicity due to the formation of tyrosyl radicals. To reduce the likelihood of cross-linking, here we designed an Aβ-40 analogue (Aβ-40 Y10F) in which the tyrosine residue was substituted by a structurally similar residue, phenylalanine. The aggregation rate was determined by the Thioflavin T (ThT) assay, in which Aβ-40 Y10F populated an ensemble of folded conformations much quicker and stronger than the wild type Aβ. Biophysical tests subsequently confirmed the results of the ThT assay, suggesting the measured increase of β-aggregation may arise predominantly from enhancement of hydrophobicity upon substitution and thus the propensity of intrinsic β-sheet formation. Nevertheless, Aβ-40 Y10F exhibited remarkably decreased neurotoxicity compared to Aβ-40 which could be partly due to the reduced generation of hydrogen peroxide. These findings may lead to further understanding of the structural perturbation of Aβ to its fibrillation

    A 3D study on the amplification of regional haze and particle growth by local emissions

    Get PDF
    The role of new particle formation (NPF) events and their contribution to haze formation through subsequent growth in polluted megacities is still controversial. To improve the understanding of the sources, meteorological conditions, and chemistry behind air pollution, we performed simultaneous measurements of aerosol composition and particle number size distributions at ground level and at 260 m in central Beijing, China, during a total of 4 months in 2015-2017. Our measurements show a pronounced decoupling of gas-to-particle conversion between the two heights, leading to different haze processes in terms of particle size distributions and chemical compositions. The development of haze was initiated by the growth of freshly formed particles at both heights, whereas the more severe haze at ground level was connected directly to local primary particles and gaseous precursors leading to higher particle growth rates. The particle growth creates a feedback loop, in which a further development of haze increases the atmospheric stability, which in turn strengthens the persisting apparent decoupling between the two heights and increases the severity of haze at ground level. Moreover, we complemented our field observations with model analyses, which suggest that the growth of NPF-originated particles accounted up to similar to 60% of the accumulation mode particles in the Beijing-Tianjin-Hebei area during haze conditions. The results suggest that a reduction in anthropogenic gaseous precursors, suppressing particle growth, is a critical step for alleviating haze although the number concentration of freshly formed particles (3-40 nm) via NPF does not reduce after emission controls.Peer reviewe

    Genetic Discovery and Risk Characterization in Type 2 Diabetes across Diverse Populations

    Get PDF
    Genomic discovery and characterization of risk loci for type 2 diabetes (T2D) have been conducted primarily in individuals of European ancestry. We conducted a multiethnic genome-wide association study of T2D among 53,102 cases and 193,679 control subjects from African, Hispanic, Asian, Native Hawaiian, and European population groups in the Population Architecture Genomics and Epidemiology (PAGE) and Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortia. In individuals of African ancestry, we discovered a risk variant in th
    corecore