223 research outputs found

    Experimental study of a counter-flow regenerative evaporative cooler

    Get PDF
    This paper aims to investigate the operational performance and impact factors of a counter-flow regenerative evaporative cooler (REC). This was undertaken through a dedicated experimental process. Temperature, humidity and flow rate of the air flows at the inlet, outlet and exhaust opening of the cooler were tested under various operational conditions, i.e., different inlet air conditions, feed water temperature and evaporation rate were also correspondingly measured. It was found that the wet-bulb effectiveness of the presented cooler ranged from 0.55 to 1.06 with Energy Efficiency Ratio (EER) rated from 2.8 to 15.5. The major experimental results were summarised below: 1) the wet-bulb effectiveness was significantly enhanced through either ways of increasing inlet wet-bulb depression or reducing intake air velocity, or alternatively by increasing working-to-intake air ratio; 2) the cooling capacity and EER of cooler was rapidly increased by means of increasing inlet wet-bulb depression or increasing intake air velocity, or reducing working-to-intake air ratio instead; 3) the effectiveness reduced by less 5% while feed water temperature increased from 18.9 to 23.1°C; 4) apparent acceleration in water evaporation rate was gained from increasing inlet wet-bulb depression or air velocity. The presented cooler showed 31% increase in wet-bulb effectiveness and 40% growth in EER compared to conventional indirect evaporative cooler. The research helped identifying the performance of a new REC with enhanced performance and thus contributed to development of energy efficient air conditioning technologies, which eventually lead to significant energy saving and carbon emissions reduction in air conditioning sector

    Energy saving potential of a counter-flow regenerative evaporative cooler for various climates of China: Experiment-based evaluation

    Get PDF
    © 2017 Recently there has been growing interest in regenerative evaporative coolers (REC), which can reduce the temperature of the supply air to below the wet-bulb of intake air and approach its dew-point. In this paper, we designed, fabricated and experimentally tested a counter-flow REC in laboratory. The REC's core heat and mass exchanger was fabricated using stacked sheets composed of high wicking evaporation (wickability of available materials was measured) and waterproof aluminium materials. The developed REC system has a much higher cooling performance compared to conventional indirect evaporative cooler. However, the decision to use the REC for China buildings depends on a dedicated evaluation of the net energy saved against the capital expended. Such an evaluation requires the hourly-based data on the availability of cooling capacity provided by the REC for various climates. The paper used an experiment-based method to estimate the cooling capacity and energy savings provided by the proposed REC for China's various climates. By using the experimental results and regional hourly-based weather data, the energy saving potential of the REC against an equivalent-sized mechanical air conditioner alone was analysed. The results indicate that, for all selected regions, the REC could reduce 53–100% of cooling load and 13–58% of electrical energy consumption annually

    Indole contributes to tetracycline resistance via the outer membrane protein OmpN in Vibrio splendidus

    Get PDF
    As an interspecies and interkingdom signaling molecule, indole has recently received attention for its diverse effects on the physiology of both bacteria and hosts. In this study, indole increased the tetracycline resistance of Vibrio splendidus. The minimal inhibitory concentration of tetracycline was 10 mu g/mL, and the OD600 of V. splendidus decreased by 94.5% in the presence of 20 mu g/mL tetracycline; however, the OD600 of V. splendidus with a mixture of 20 mu g/mL tetracycline and 125 mu M indole was 10- or 4.5-fold higher than that with only 20 mu g/mL tetracycline at different time points. The percentage of cells resistant to 10 mu g/mL tetracycline was 600-fold higher in the culture with an OD600 of approximately 2.0 (higher level of indole) than that in the culture with an OD600 of 0.5, which also meant that the level of indole was correlated to the tetracycline resistance of V. splendidus. Furthermore, one differentially expressed protein, which was identified as the outer membrane porin OmpN using SDS-PAGE combined with MALDI-TOF/TOF MS, was upregulated. Consequently, the expression of the ompN gene in the presence of either tetracycline or indole and simultaneously in the presence of indole and tetracycline was upregulated by 1.8-, 2.54-, and 6.01-fold, respectively, compared to the control samples. The combined results demonstrated that indole enhanced the tetracycline resistance of V. splendidus, and this resistance was probably due to upregulation of the outer membrane porin OmpN

    Adaptive and Sequential Methods for Clinical Trials

    Get PDF
    This special issue describes state-of-the-art statistical research in adaptive and sequential methods and the application of such methods in clinical trials. It provides 1 review article and 5 research articles contributed by some of the leading experts in this field. The review article gives a comprehensive overview of the outstanding methodology in the current literature that is related to adaptive and sequential clinical trials, while each of the 5 research articles addresses specific critical issues in contemporary clinical trials, as summarized below

    The research and development of ChemGrid in CGSP

    Full text link
    With the rapid development of computing technologies and network technologies, Grid technology has emerged as the solution for high-performance computing. Recently, the grid of orient-services has become a hot issue in this research area. In this paper, we propose an architecture of ChemGrid in CGSP (China Grid Support Platform). The effectiveness of the proposed architecture is demonstrated by an example which is developed as a Web service based on CGSP; the Web service is used for searching elements in the periodic table. An improvement of the user interface for applications is proposed in order to obtain results interactively. Finally, an extension of ChemGrid is discussed in order to integrate different types of resources and provide specialized services.<br /

    Pushing the Limits of 3D Shape Generation at Scale

    Full text link
    We present a significant breakthrough in 3D shape generation by scaling it to unprecedented dimensions. Through the adaptation of the Auto-Regressive model and the utilization of large language models, we have developed a remarkable model with an astounding 3.6 billion trainable parameters, establishing it as the largest 3D shape generation model to date, named Argus-3D. Our approach addresses the limitations of existing methods by enhancing the quality and diversity of generated 3D shapes. To tackle the challenges of high-resolution 3D shape generation, our model incorporates tri-plane features as latent representations, effectively reducing computational complexity. Additionally, we introduce a discrete codebook for efficient quantization of these representations. Leveraging the power of transformers, we enable multi-modal conditional generation, facilitating the production of diverse and visually impressive 3D shapes. To train our expansive model, we leverage an ensemble of publicly-available 3D datasets, consisting of a comprehensive collection of approximately 900,000 objects from renowned repositories such as ModelNet40, ShapeNet, Pix3D, 3D-Future, and Objaverse. This diverse dataset empowers our model to learn from a wide range of object variations, bolstering its ability to generate high-quality and diverse 3D shapes. Extensive experimentation demonstrate the remarkable efficacy of our approach in significantly improving the visual quality of generated 3D shapes. By pushing the boundaries of 3D generation, introducing novel methods for latent representation learning, and harnessing the power of transformers for multi-modal conditional generation, our contributions pave the way for substantial advancements in the field. Our work unlocks new possibilities for applications in gaming, virtual reality, product design, and other domains that demand high-quality and diverse 3D objects.Comment: Project page: https://argus-3d.github.io

    Efficacy and safety of consolidation durvalumab after chemoradiation therapy for stage III non-small-cell lung cancer: a systematic review, meta-analysis, and meta-regression of real-world studies

    Get PDF
    Background: The current review aimed to pool real-world evidence on the efficacy and toxicity of consolidation durvalumab for stage III unresectable non-small cell lung cancer (NSCLC) after curative chemoradiotherapy.Methods: PubMed, CENTRAL, ScienceDirect, Embase, and Google Scholar were searched for observational studies reporting the use of durvalumab for NSCLC till 12th April 2022. Twenty-three studies with 4,400 patients were included.Results: The pooled 1-year overall survival (OS) and progression-free survival rates (PFS) were 85% (95% CI: 81%–89%) and 60% (95% CI: 56%–64%) respectively. Pooled incidence of all-grade pneumonitis, grade ≥3 pneumonitis and discontinuation of durvalumab due to pneumonitis were 27% (95% CI: 19%–36%), 8% (95% CI: 6%–10%) and 17% (95% CI: 12%–23%) respectively. The pooled proportion of patients experiencing endocrine, cutaneous, musculoskeletal, and gastrointestinal adverse events was 11% (95% CI: 7%–18%), 8% (95% CI: 3%–17%), 5% (95% CI: 3%–6%), and 6% (95% CI: 3%–12%), respectively.Conclusion: Meta-regression indicated that performance status significantly influenced PFS, while age, time to durvalumab, and programmed death-ligand 1 status significantly affected pneumonitis rates. Real-world evidence suggests that the short-term efficacy and safety of durvalumab are consistent with that of the PACIFIC trial. The congruence of results lends support to durvalumab use in improving outcomes of unresectable stage III NSCLC.Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022324663, identifier CRD42022324663

    Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease

    Get PDF
    Helminth infection may modulate the expression of Toll like receptors (TLR) in dendritic cells (DCs) and modify the responsiveness of DCs to TLR ligands. This may regulate aberrant intestinal inflammation in humans with helminthes and may thus help alleviate inflammation associated with human inflammatory bowel disease (IBD). Epidemiological and experimental data provide further evidence that reducing helminth infections increases the incidence rate of such autoimmune diseases. Fine control of inflammation in the TLR pathway is highly desirable for effective host defense. Thus, the use of antagonists of TLR-signaling and agonists of their negative regulators from helminths or helminth products should be considered for the treatment of IBD

    Modulation of the Pol II CTD Phosphorylation Code by Rac1 and Cdc42 Small GTPases in Cultured Human Cancer Cells and Its Implication for Developing a Synthetic-Lethal Cancer Therapy

    Full text link
    Rho GTPases, including Rho, Cdc42, Rac and ROP subfamilies, are key signaling molecules in RNA polymerase II (Pol II) transcriptional control. Our prior work has shown that plant ROP and yeast Cdc42 GTPases similarly modulate Ser2 and Ser5 phosphorylation status of the C-terminal domain (CTD) of the Pol II largest subunit by regulating CTD phosphatase degradation. Here, we present genetic and pharmacological evidence showing that Cdc42 and Rac1 GTPase signaling modulates a similar CTD Ser2 and Ser5 phosphorylation code in cultured human cancer cells. While siRNA knockdown of Cdc42 and Rac1, respectively, in HeLa cells increased the level of CTD Ser phosphatases RPAP2 and FCP1, they both decreased the level of CTD kinases CDK7 and CDK13. In addition, the protein degradation inhibitor MG132 reversed the effect of THZ1, a CDK7 inhibitor which could decrease the cell number and amount of CDK7 and CDK13, accompanied by a reduction in the level of CTD Ser2 and Ser5 phosphorylation and DOCK4 and DOCK9 (the activators for Rac1 and Cdc42, respectively). Conversely, treatments of Torin1 or serum deprivation, both of which promote protein degradation, could enhance the effect of THZ1, indicating the involvement of protein degradation in controlling CDK7 and CDK13. Our results support an evolutionarily conserved signaling shortcut model linking Rho GTPases to Pol II transcription across three kingdoms, Fungi, Plantae and Animalia, and could lead to the development of a potential synthetic-lethal strategy in controlling cancer cell proliferation or death
    corecore