358 research outputs found

    Methods for Promoting the Revascularization and Reenervation of CNS Lesions

    Get PDF
    The present invention provides methods of promoting the revascularization and/or reenervation of central nervous system lesions using an in-situ crosslinkable hydrogel

    Fabrication of Three Dimensional Aligned Nanofiber Array

    Get PDF
    Disclosed are methods of forming three dimensional arrays of aligned nanofibers in an open, loose structure of any desired depth. The arrays are formed according to an electrospinning process utilizing two parallel conducting plates to align the fibers and rotating tracks to distribute the fibers throughout the array. Arrays can be used as formed, for instance in tissue engineering applications as three dimensional scaffolding constructs. As-formed arrays can be combined with other materials to form a composite 3-D structure. For instance, composite polymeric materials can be electrospun to form composite nanofibers within the array. Multiple polymeric materials can be electrospun at different areas of the array to form a composite array including materially different nanofibers throughout the array. The arrays can be loaded with other fibrous or non-fibrous materials to form a composite array. Arrays can also be rolled to form a uniaxial fiber bundle

    Fabrication of three dimensional aligned nanofiber array

    Get PDF
    Disclosed are methods of forming three dimensional arrays of aligned nanofibers in an open, loose structure of any desired depth. The arrays are formed according to an electrospinning process utilizing two parallel conducting plates to align the fibers and rotating tracks to distribute the fibers throughout the array. Arrays can be used as formed, for instance in tissue engineering applications as three dimensional scaffolding constructs. As-formed arrays can be combined with other materials to form a composite 3-D structure. For instance, composite polymeric materials can be electrospun to form composite nanofibers within the array. Multiple polymeric materials can be electrospun at different areas of the array to form a composite array including materially different nanofibers throughout the array. The arrays can be loaded with other fibrous or non-fibrous materials to form a composite array. Arrays can also be rolled to form a uniaxial fiber bundle

    Polysaccharide-based biomaterials

    Get PDF
    Disclosed are a series of kneadable, pliable polymers for use in forming compositions that can be used as bone wax or as a cellular scaffold. Polymers can include a polysaccharide backbone and can be biocompatible and thrombogenic. In addition, the compositions can be osteoconductive as well as biodegradable. The disclosed compositions can be used to help control bleeding from bone surfaces as well as to promote bone regeneration and fusion. The compositions can inhibit the growth of microorganisms in implantation sites and can be loaded with additional bioactive agents to further promote healing and infection prevention

    Axis current damage identification method based on bispectral locally preserving projection

    Get PDF
    A bispectral locally-preserving projection fault identification method is proposed. Fault pattern recognition is performed using a support vector machine (SVM). The experimental results show that the method can effectively identify the current damage of the bearing shaft, and the classification accuracy of the bearing fault containing the shaft current damage can reach more than 96.25 %

    Methods for Promoting the Revascularization and Reenervation of CNS Lesions

    Get PDF
    The present invention provides methods of promoting the revascularization and/or reenervation of central nervous system lesions using an in-situ crosslinkable hydrogel. The present invention also provides methods of treating a spinal cord injury by topically delivering to the spinal cord injury site a vehicle comprising a neurotrophic factor and/or anti-inflammatory agent. Also provided are methods of treating a spinal cord injury by topically administering or delivering a hydrogel to the injury site

    Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication

    Get PDF
    A hybrid cell sheet engineering approach was developed using ultra-thin nanofiber arrays to host the formation of composite nanofiber/cell sheets. It was found that confluent aligned cell sheets could grow on uniaxially-aligned and crisscrossed nanofiber arrays with extremely low fiber densities. The porosity of the nanofiber sheets was sufficient to allow aligned linear myotube formation from differentiated myoblasts on both sides of the nanofiber sheets, in spite of single-side cell seeding. The nanofiber content of the composite cell sheets is minimized to reduce the hindrance to cell migration, cell-cell contacts, mass transport, as well as the foreign body response or inflammatory response associated with the biomaterial. Even at extremely low densities, the nanofiber component significantly enhanced the stability and mechanical properties of the composite cell sheets. In addition, the aligned nanofiber arrays imparted excellent handling properties to the composite cell sheets, which allowed easy processing into more complex, thick 3D structures of higher hierarchy. Aligned nanofiber array-based composite cell sheet engineering combines several advantages of material-free cell sheet engineering and polymer scaffold-based cell sheet engineering; and it represents a new direction in aligned cell sheet engineering for a multitude of tissue engineering applications

    Synthetic vascular tissue and method of forming same

    Get PDF
    Disclosed are composite materials that can more closely mimic the mechanical characteristics of natural elastic tissue, such as vascular tissue. Disclosed materials include a combination of elastic nanofibers and non-elastic nanofibers. Also disclosed are a variety of methods for forming the composite materials. Formation methods generally include the utilization of electrospinning methods to form a fibrous composite construct including fibers of different mechanical characteristics

    Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing

    Get PDF
    Three dimensional multicellular aggregate, also referred to as cell spheroid or microtissue, is an indispensable tool for in vitro evaluating antitumor activity and drug efficacy. Compared with classical cellular monolayer, multicellular tumor spheroid (MCTS) offers a more rational platform to predict in vivo drug efficacy and toxicity. Nevertheless, traditional processing methods such as plastic dish culture with nonadhesive surfaces are regularly time-consuming, laborious and difficult to provide uniform-sized spheroids, thus causing poor reproducibility of experimental data and impeding high-throughput drug screening. In order to provide a robust and effective platform for in vitro drug evaluation, we present an agarose scaffold prepared with the template containing uniform-sized micro-wells in commercially available cell culture plates. The agarose scaffold allows for good adjustment of MCTS size and large-scale production of MCTS. Transparent agarose scaffold also allows for monitoring of spheroid formation under an optical microscopy. The formation of MCTS from MCF-7 cells was prepared using different-size-well templates and systematically investigated in terms of spheroid growth curve, circularity, and cell viability. The doxorubicin cytotoxicity against MCF-7 spheroid and MCF-7 monolayer cells was compared. The drug penetration behavior, cell cycle distribution, cell apoptosis, and gene expression were also evaluated in MCF-7 spheroid. The findings of this study indicate that, compared with cellular monolayer, MCTS provides a valuable platform for the assessment of therapeutic candidates in an in vivo-mimic microenvironment, and thus has great potential for use in drug discovery and tumor biology research
    corecore