129 research outputs found

    Flexible Superwettable Tapes for On-Site Detection of Heavy Metals

    Get PDF
    Bioinspired superwettable micropatterns that combine superhydrophobicity and superhydrophilicity have been proved to exhibit outstanding capacity in controlling and patterning microdroplets and possessed new functionalities and possibilities in emerging sensing applications. Here, we introduce a flexible tape-based superhydrophilic–superhydrophobic tape toward on-site heavy metals monitoring. On such a superwettable tape, capillarity-assisted superhydrophilic microwells allow directly anchoring indicators in fixed locations and sampling into a test zone via simple dip-pull from an origin specimen solution. In contrast, the superhydrophobic substrate could confine the microdroplets in the superhydrophilic microwells for reducing the amount of analytical solution. The tape-based microchip also displays excellent flexibility against stretching, bending, and torquing for expanding wearable and portable sensing devices. Qualitative and quantitative colorimetric assessments of multiplex heavy metal analyses (chromium, copper, and nickel) by the naked eye are also achieved. The superwettable tape-based platforms with a facile operation mode and accessible signal read-out represent unrevealed potential for on-site environmental monitoring

    Flexible Superwettable Tapes for On-Site Detection of Heavy Metals

    Get PDF
    Bioinspired superwettable micropatterns that combine superhydrophobicity and superhydrophilicity have been proved to exhibit outstanding capacity in controlling and patterning microdroplets and possessed new functionalities and possibilities in emerging sensing applications. Here, we introduce a flexible tape-based superhydrophilic–superhydrophobic tape toward on-site heavy metals monitoring. On such a superwettable tape, capillarity-assisted superhydrophilic microwells allow directly anchoring indicators in fixed locations and sampling into a test zone via simple dip-pull from an origin specimen solution. In contrast, the superhydrophobic substrate could confine the microdroplets in the superhydrophilic microwells for reducing the amount of analytical solution. The tape-based microchip also displays excellent flexibility against stretching, bending, and torquing for expanding wearable and portable sensing devices. Qualitative and quantitative colorimetric assessments of multiplex heavy metal analyses (chromium, copper, and nickel) by the naked eye are also achieved. The superwettable tape-based platforms with a facile operation mode and accessible signal read-out represent unrevealed potential for on-site environmental monitoring

    A Multimode Responsive Aptasensor for Adenosine Detection

    Get PDF
    We report a novel multimode detection aptasensor with three signal responses (i.e., fluorescence recovery, enhanced Raman signal, and color change). The presence of adenosine induces the conformational switch of the adenosine aptamer (Apt), forming adenosine-aptamer complex and releasing quantum dots (QDs) from AuNPs, resulting in the recovered fluorescence, the enhanced Raman signal, and color change of the solution. The multimode signal recognition is potentially advantageous in improving the precision and reliability of the detection in complex environments compared to the conventional single-mode sensing system. The multimode detection strategy opens up a new possibility in sensing and quantifying more other target molecules

    Flexible and superwettable bands as a platform toward sweat sampling and sensing

    Get PDF
    Wearable biosensors as a user-friendly measurement platform have become a rapidly growing field of interests due to their possibility in integrating traditional medical diagnostics and healthcare management into miniature lab-on-body analytic devices. This paper demonstrates a flexible and skin-mounted band that combines superhydrophobic-superhydrophilic microarrays with nanodendritic colorimetric biosensors toward in situ sweat sampling and analysis. Particularly, on the superwettable bands, the superhydrophobic background could confine microdroplets into superhydrophilic microwells. On-body investigations further reveal that the secreted sweat is repelled by the superhydrophobic silica coating and precisely collected and sampled onto the superhydrophilic micropatterns with negligible lateral spreading, which provides an independent “vessel” toward cellphone-based sweat biodetection (pH, chloride, glucose and calcium). Such wearable, superwettable band-based biosensors with improved interface controllability could significantly enhance epidemical sweat sampling in well-defined sites, holding a great promise for facile and noninvasive biofluids analysis

    Flexible and superwettable bands as a platform toward sweat sampling and sensing

    Get PDF
    Wearable biosensors as a user-friendly measurement platform have become a rapidly growing field of interests due to their possibility in integrating traditional medical diagnostics and healthcare management into miniature lab-on-body analytic devices. This paper demonstrates a flexible and skin-mounted band that combines superhydrophobic-superhydrophilic microarrays with nanodendritic colorimetric biosensors toward in situ sweat sampling and analysis. Particularly, on the superwettable bands, the superhydrophobic background could confine microdroplets into superhydrophilic microwells. On-body investigations further reveal that the secreted sweat is repelled by the superhydrophobic silica coating and precisely collected and sampled onto the superhydrophilic micropatterns with negligible lateral spreading, which provides an independent “vessel” toward cellphone-based sweat biodetection (pH, chloride, glucose and calcium). Such wearable, superwettable band-based biosensors with improved interface controllability could significantly enhance epidemical sweat sampling in well-defined sites, holding a great promise for facile and noninvasive biofluids analysis

    Materials systems and autonomy in electromechanical sound art

    Get PDF
    Sound art is a difficult to categorise and broad genre description that draws together modes of creative practice which use sound as a medium or a subject. The field is considered to be critically underrepresented and under-theorised despite an increase of attention and popularity since the 1990s (Licht 2007, 2001, Cox 2009). This is partly as a consequence of an analytical and historical emphasis on textual and conceptual approaches which dominated the arts through the 1970s and 1980s (Cox 2011, 2013). In particular, acknowledgement of the influence of object-based and kinetic sculpture within the field of sound art is found to be inadequate (Chau 2014, Keylin 2015). This thesis presents an original body of sound art practice as a means through which to uncover and explore connections between sound art, experimental composition, kinetic art and sculpture. The term 'electromechanical' is used to identify this work, highlighting its particular concerns with the use of electrically animated or amplified materials. Through the production, exhibition, critical appraisal and contextualisation of the work new observations and distinctions within the field are presented. These include the identification of a 'closed system aesthetic' and the distinction between robotic and process driven approaches to electromechanical sound art. A further contribution to the field consists of a detailed consideration of sound art emerging from an intersection of experimental music and sculptural practices during the 1960s. The original works produced for the project, and their production are documented and described in detail alongside existing canonical and contemporary examples of sound art. Analysis of these works is informed by materialist and object-orientated critical positions, and science and technology studies. The method of art practice as research is described and extended in an original way that encompasses and applies a systems approach to creative practice

    Novel targeting of PEGylated liposomes for codelivery of TGF-β1 siRNA and four antitubercular drugs to human macrophages for the treatment of mycobacterial infection: a quantitative proteomic study

    Full text link
    Tuberculosis (TB) is still a major public health issue in developing countries, and its chemotherapy is compromised by poor drug compliance and severe side effects. This study aimed to synthesize and characterize new multimodal PEGylated liposomes encapsulated with clinically commonly used anti-TB drugs with linkage to small interfering RNA (siRNA) against transforming growth factor-β1 (TGF-β1). The novel NP-siRNA liposomes could target THP-1-derived human macrophages that were the host cells of mycobacterium infection. The biological effects of the NP-siRNA liposomes were evaluated on cell cycle distribution, apoptosis, autophagy, and the gene silencing efficiency of TGF-β1 siRNA in human macrophages. We also explored the proteomic responses to the newly synthesized NP-siRNA liposomes using the stable isotope labeling with amino acids in cell culture approach. The results showed that the multifunctional PEGylated liposomes were successfully synthesized and chemically characterized with a mean size of 265.1 nm. The novel NP-siRNA liposomes functionalized with the anti-TB drugs and TGF-β1 siRNA were endocytosed efficiently by human macrophages as visualized by transmission electron microscopy and scanning electron microscopy. Furthermore, the liposomes showed a low cytotoxicity toward human macrophages. There was no significant effect on cell cycle distribution and apoptosis in THP-1-derived macrophages after drug exposure at concentrations ranging from 2.5 to 62.5 μg/mL. Notably, there was a 6.4-fold increase in the autophagy of human macrophages when treated with the NP-siRNA liposomes at 62.5 μg/mL. In addition, the TGF-β1 and nuclear factor-κB expression levels were downregulated by the NP-siRNA liposomes in THP-1-derived macrophages. The Ingenuity Pathway Analysis data showed that there were over 40 signaling pathways involved in the proteomic responses to NP-siRNA liposome exposure in human macrophages, with 160 proteins mapped. The top five canonical signaling pathways were eukaryotic initiation factor 2 signaling, actin cytoskeleton signaling, remodeling of epithelial adherens junctions, epithelial adherens junction signaling, and Rho GDP-dissociation inhibitor signaling pathways. Collectively, the novel synthetic targeting liposomes represent a promising delivery system for anti-TB drugs to human macrophages with good selectivity and minimal cytotoxicity

    Synthesis and biological evaluation of novel folic acid receptor-targeted, β-cyclodextrin-based drug complexes for cancer treatment

    Get PDF
    Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5-2.5 nm. The host-guest association constant Ka was 1,639 M-1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer

    The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells

    Full text link
    Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E-cadherin and zona occludens protein 1 (ZO-1) but downregulated N-cadherin, zinc finger E-box-binding homeobox 1 (TCF8/ZEB1), snail, slug, vimentin, and β-catenin. Notably, Danu showed lower cytotoxicity toward normal breast epithelial MCF10A cells. These findings indicate that Danu promotes cellular apoptosis and autophagy but inhibits EMT in human breast cancer cells via modulation of p38 MAPK/Erk1/2/Akt/mTOR signaling pathways. Danu may represent a promising anticancer agent for breast cancer treatment. More studies are warranted to fully delineate the underlying mechanisms, efficacy, and safety of Danu in breast cancer therapy

    Multi-objective structural optimization of a cyclone for an aggregate drying pulverised coal combustion device

    No full text
    The focus of this work is on the problem of the low efficiency and high pollution caused by the poor quality of coal, unstable loads and other factors in the pulverised coal combustion process. For this reason, a cyclone is installed at the second outlet of pulverised coal combustion devices. Multi-parameter and multi-objective optimizations were involved in the design of the cyclone. The influences of the structural parameters on the evaluation index have been rigorously analysed through the evaluation index of the internal flow field of the burner. Further, the genetic algorithm NSGA-II was applied to optimise the structural parameters of the cyclone based on Response Surface Model. The results showed that the outer diameter of the cyclone, the installation angle of the swirl vanes, and the number of swirl vanes had a significant impact on the combustion, as well as the NOX emission characteristics of pulverised coal. When the outer diameter of the cyclone was 500 mm, the number of swirl vanes was 12, and the installation angle of the swirl vanes was 48 degrees, the combustion efficiency of the pulverised coal burner was increased by 47.3%, and the NOX emissions were decreased by 19.1%
    corecore