34 research outputs found

    DFIG machine design for maximizing power output based on surrogate optimization algorithm

    Get PDF
    This paper presents a surrogate-model-based optimization of a doubly-fed induction generator (DFIG) machine winding design for maximizing power yield. Based on site-specific wind profile data and the machine's previous operational performance, the DFIG's stator and rotor windings are optimized to match the maximum efficiency with operating conditions for rewinding purposes. The particle swarm optimization-based surrogate optimization techniques are used in conjunction with the finite element method to optimize the machine design utilizing the limited available information for the site-specific wind profile and generator operating conditions. A response surface method in the surrogate model is developed to formulate the design objectives and constraints. Besides, the machine tests and efficiency calculations follow IEEE standard 112-B. Numerical and experimental results validate the effectiveness of the proposed technologies

    Novel Design of High-Gain Planar Dipole-Array Antenna for RFID 2.45 GHz

    Get PDF
    This paper presents a novel high-gain planar dipole-array antenna for 2.45 GHz which consists of four planar dipole elements placed in two parallel lines. Phase retardation of each element is set by feeding network to form controllable radiation direction. The radiation pattern of the array is discussed according to Arrays Theorem. The measured −10 dB band is from 2.3 GHz to 2.57 GHz, and peak gain in this band is 7.5 dBi. The gain can even reach 10.5 dBi after installing additional ground. The proposed antenna has advantages of high gain, controllable direction, and planarity which are suitable for 2.45 GHz RFID base station

    Evaluation of Dielectric Loss Using the Characteristic Phase Method

    No full text

    Miniaturized Circularly Polarized Implantable Antenna for ISM-Band Biomedical Devices

    No full text
    A compact circularly polarized antenna operating at 915 MHz industrial, scientific, and medical (ISM) band for biomedical implantable applications is presented and experimentally measured. The proposed antenna can be miniaturized to a large extent with the compact size of 15 × 15 × 1.27 mm3 by means of loading patches to a ring-shaped microstrip patch antenna. An impedance bandwidth of 10.6% (865–962 MHz) for reflection coefficient less than −10 dB can be obtained. Meanwhile, the simulated 3 dB axial-ratio (AR) bandwidth reaches 14 MHz. Finally, the optimized design was fabricated and tested, and the measured results agree well with simulated results

    A Wideband Circularly Polarized Implantable Antenna for 915 MHz ISM-Band Biotelemetry Devices

    No full text

    Novel Design of High-Gain Planar Dipole-Array Antenna for RFID 2.45 GHz

    No full text
    This paper presents a novel high-gain planar dipole-array antenna for 2.45 GHz which consists of four planar dipole elements placed in two parallel lines. Phase retardation of each element is set by feeding network to form controllable radiation direction. The radiation pattern of the array is discussed according to Arrays Theorem. The measured −10 dB band is from 2.3 GHz to 2.57 GHz, and peak gain in this band is 7.5 dBi. The gain can even reach 10.5 dBi after installing additional ground. The proposed antenna has advantages of high gain, controllable direction, and planarity which are suitable for 2.45 GHz RFID base station

    Association of Long Non-Coding RNA HOTAIR Polymorphisms with Cervical Cancer Risk in a Chinese Population.

    No full text
    Long non-coding RNAs (lncRNAs), HOTAIR has been reported to be upregulated in cervical cancer development and progression. However, SNPs (single nucleotide polymorphisms) in the lncRNAs and their associations with cervical cancer susceptibility have not been reported. In the current study, we hypothesized that SNPs within the lncRNA HOTAIR may influence the risk of cervical cancer. We performed a case-control study including 510 cervical cancer patients (cases) and 713 cancer-free individuals (controls) to investigate the association between three haplotype-tagging SNPs (rs920778, rs1899663 and rs4759314) in the lncRNA HOTAIR and the risk of cervical cancer. We found a strong association between the SNP rs920778 in the intronic enhancer of the HOTAIR and cervical cancer (P<10-4). Moreover, the cervical cancer patients with homozygous TT genotype were significantly associated with tumor-node-metastasis (TNM) stage. In vitro assays with allele-specific reporter constructs indicated that the reporter constructs bearing rs920778T allele conferred elevated reporter gene transcriptional activity when compared to the reporter constructs containing rs920778C allele. Furthermore, HOTAIR expression was higher in cervical cancer tissues than that in corresponding normal tissues, and the high expression was associated with the risk-associated allele T. In summary, our studies provide strong functional evidence that functional SNP rs920778 regulates HOTAIR expression, and may ultimately influence the predisposition for cervical cancer

    A Switchable Near-/Far-Field Reader Antenna for UHF RFID Applications

    No full text
    corecore