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Abstract—This paper presents a surrogate-model-based opti-
mization of a doubly-fed induction generator (DFIG) machine
winding design for maximizing power yield. Based on site-specific
wind profile data and the machine’s previous operational per-
formance, the DFIG’s stator and rotor windings are optimized
to match the maximum efficiency with operating conditions for
rewinding purposes. The particle swarm optimization-based sur-
rogate optimization techniques are used in conjunction with the
finite element method to optimize the machine design utilizing the
limited available information for the site-specific wind profile and
generator operating conditions. A response surface method in the
surrogate model is developed to formulate the design objectives
and constraints. Besides, the machine tests and efficiency calcu-
lations follow IEEE standard 112-B. Numerical and experimental
results validate the effectiveness of the proposed technologies.

Index Terms—Doubly fed induction generator, operating condi-
tions, particle swarm optimization, power loss, rewinding, surro-
gate model, wind power generation.

I. INTRODUCTION

W ITH THE increasing concern over global warming and
the depletion of fossil fuels, the development of renew-

able energy technologies is becoming increasingly important.
Among renewable sources of energy, wind energy plays a criti-
cal role in the establishment of an environmentally sustainable
low carbon economy. Globally, the majority of installed medium
and large-sized wind turbines employ doubly-fed induction gen-
erators (DFIGs) to provide the variable-speed operation needed
to harvest wind energy. In general, the DFIGs available on the
market are standard machines which may not be the best option
for a specific site. These machines tend to be large and prone
to faults, and thus they need to be repaired or rewound when
they fail. Currently, the common practice in the machine repair
industry is to return to the original machine design as close as
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possible. As a consequence, a unique opportunity of redesigning
the failed machines is wasted [1].

This study takes a different view by optimizing the DFIG
machine design at the rewinding stage, based on an in-depth
understanding of the site-specific information (i.e., wind pro-
file) and the machine’s previous performance (i.e., maximum
efficiency and operating points). In this case, only the stator and
rotor windings are the refinement parameters as they are the
components to be replaced during the rewinding process. For
large DFIG machines, a small improvement in efficiency will
lead to a significant energy saving and environment benefits [1].
In the European Union, a 3% increase in the energy efficiency
of electrical machines would produce electricity savings of over
$2 billion per year [2]. As a result, the economic implication
is also significant when improving machine design for wind
turbine applications.

In fact, the optimization of machine design is a multivariable
and multimodal problem [3]. Thus, the multiphysics dimension
of electrical machines should be taken into account. The conven-
tional design optimization of DFIGs relies on analytical and em-
pirical methods. With the development of computing techniques
and numerical methods, the mainstream design optimization is
now based on finite element method (FEM). Accurate FEM
models can facilitate the exploration of alternative designs and
reduce the resource and time in both design and repair stages.
However, there are two challenges.

1) A high-fidelity FEM model is lengthy and complicated
to process; it may take hundreds of iterations to arrive a
solution.

2) Multiple variable and constraint functions are solved si-
multaneously while FEM is not suitable for local sensi-
tivity calculations, which are crucial for general gradient-
based optimization.

In contrast, a surrogate modeling technique is widely used
[4] to formulate an explicit relationship between the objec-
tive/constraint functions and design variables so as to reduce
the FEM computational time. Furthermore, statistical methods
are also useful to investigate the correlation between input pa-
rameters and numerical simulation outputs to identify significant
parameters for an efficient optimal design. The obtained surro-
gate model can be easily used to evaluate the performance at
trial design points.

It is well known that wind speed at a given installation site
can vary significantly and are difficult to predict with accuracy.
It is of particular importance to comprehend the distribution of
wind speed frequency. At present, the Weibull model is popu-
lar because of its accuracy and easiness [5], [6]. However, the
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Fig. 1. Schematic of a DFIG wind turbine system.

power losses in wind turbine generators are not considered when
calculating the output power of wind turbines.

This paper presents a new method based on FEM analysis,
surrogate optimization and wind speed distribution for the opti-
mal design of a DFIG in terms of maximum power output. A set
of FEM models are first developed to estimate the power output
of the DFIG under the characterized distribution of wind speeds
at a specific site. Second, a surrogate model is constructed to
approximate the input-output model and refine the machine de-
sign. Finally, the optimized design is verified by numerical and
experimental tests.

II. WIND TURBINE MODEL

A schematic diagram of the DFIG wind turbine system is
shown in Fig. 1. The wind turbine is connected to the DFIG
rotor through a drivetrain system, which contains high and low
speed shafts, bearings and gearboxes. The DFIG is constructed
from a wound rotor induction machine where its stator is directly
connected to the grid and its rotor is fed by bidirectional voltage-
source converters, which are two four-quadrant IGBT pulse
width modulation (PWM) converters [i.e., rotor side converter
(RSC) and stator side converter (GSC)] connected back-to-back
by a dc-link capacitor [7]. The crowbar is used to short-circuit
the RSC in order to protect the RSC from overcurrents in the
rotor circuit during transient disturbances [8]. The speed and
torque can be regulated by controlling the RSC.

A. Wind Energy Estimation

It is possible to characterize a wind turbine power curve based
on available wind energy and the rotor power coefficient, Cp . In
general, Cp can be expressed as a function of the tip speed ratio
λ, which is defined by

λ =
ωR

U
(1)

where ω is the angular speed of the wind turbine rotor, R is the
radius of the wind rotor, and U is the wind speed. For a wind
turbine, Cp is represented by a nonlinear curve in terms of λ and
the pitch angle β [9]

Cp =(0.44 − 0.0167β) sin
(

π(λ − 2)
13 − 0.3β

)
− 0.00184(λ − 2)β.

(2)
Therefore, the average wind machine power is found by

Pw =
1
2
ρπR2η

∫ ∞

0
Cp(λ)U 3p(U)dU (3)

Fig. 2. Magnetic flux distribution of the DFIG at no load condition.

where ρ is the air density, η is the drive train efficiency (generator
power/rotor power). In practice, wind turbine is controlled to
operate at a maximum power output.

B. DFIG Mathematical Model

The DFIG model in the d-q reference frame is given by

Vds = Rsids +
dψds

dt
− ωsψqs (4)

Vqs = Rsiqs +
dψqs

dt
+ ωsψds (5)

Vdr = Rridr +
dψdr

dt
− (ω − ωr )ψqr (6)

Vqr = Rriqr +
dψqr

dt
− (ω − ωr )ψdr (7)

ψds = (Lls + Lm )ids + Lm idr (8)

ψqs = (Lls + Lm )iqs + Lm iqr (9)

ψdr = (Llr + Lm )idr + Lm ids (10)

ψqr = (Llr + Lm )iqr + Lm iqs (11)

where Vds and Vqs are the d- and q-axis stator voltages; Vdr and
Vqr are the d- and q-axis rotor voltages; ids and iqs are the d-
and q-axis stator currents; idr and iqr are the d- and q-axis rotor
currents, respectively. Rs and Rr are the phase resistances of
the stator and rotor; Lls and Llr are the leakage inductances of
the stator and rotor; Lm is the magnetizing inductance; ωs and
ωr are the synchronous speed and the rotor speed of the DFIG,
respectively.

C. Finite Element Model

A 2-D model of DFIG is built by the FE software Infolytica
MagNet, as shown in Fig. 2. Its ratings are listed in Table I.
In this model, the skin effect was ignored. The finite element
model of DFIG is given by [10]

∂

∂x

(
v
∂AZ

∂x

)
+

∂

∂y

(
v
∂AZ

∂y

)
= −JZ

AZ = AZ 0 (12)
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TABLE I
MACHINE RATINGS

Parameter Value

Rated power (kW) 55
Pole number 4
Rated speed (r/min) 1457
Stator voltage (V) 380
Stator current (A) 104
Rotor voltage (V) 394
Frequency (Hz) 50

where AZ is the axial components of the magnetic vector poten-
tial; JZ is the source current density; v is the material relativity;
AZ 0 is the given values for the boundary τ . It is well known
that the permeability of ferromagnetic materials is much greater
than that of air so that the magnetic field lines are parallel to the
boundary, i.e., AZ = AZ 0 .

Based on the numerical model, the iron loss can be calculated,
making it is easier to focus on the winding design (material and
size).

III. WIND SPEED DATA ANALYSIS

Actual wind speed data from a U.K. wind farm at Albemarle is
analyzed by statistical methods to derive the wind speed prob-
ability density function. In the literature, the Pearson model,
Rayleigh model and Weibull model are widely used to fit the
distribution of wind speed frequency. However, it is found from
a large number of measured data that the two-parameter Weibull
distribution is a good representation of the wind speed [11] and
thus adopted in this paper.

A. Weibull Model

Using the Weibull model, it is very accurate to analyze the
wind speed data based on the shape factor k and the scale factor
c. The Weibull probability distribution function is obtained by

F (v) =
∫ +∞

0
f(v)dv = 1 − e−( v

c )k

(13)

where v is the wind speed and the probability density is

f(v) =
k

c

(v

c

)k−1
e−( v

c )k

, v > 0, k, c > 0. (14)

B. Statistic Estimation Method (SEM)

In order to estimate the Weibull probability density function,
the SEM is first used to analyze the wind speed data in terms of
the wind average velocity v and the standard deviation σ. v can
reflect the main tendency of data change and σ represents the
extent of deviation from the mean [5].
v and σ are given by

v =

⎛
⎜⎜⎝

n∑
i=1

v3
i

n

⎞
⎟⎟⎠

1
3

(15)

Fig. 3. Measured wind profile and its Weibull distribution.

σ2 =
1
2

n∑
i=1

(vi − v)2 . (16)

k and c can be expressed as

k =
(σ

v

)−1.086
(17)

c =
μ

Γ
(
1 + 1

k

) . (18)

However, it is quite complex to solve the Gamma function di-
rectly. Instead, these formulas are often solved by the empirical
approach [12]

Γ
(

1 +
1
k

)
=

(
0.568 +

0.434
k

) 1
k

. (19)

As a result, the mean wind speed can be calculated by

v = c ∗ Γ
(

1 +
1
k

)
. (20)

Following this procedure, the Weibull distribution for this
wind farm is analyzed and presented in Fig. 3. A good fit can be
found when compared with measured wind speed data.

IV. PROPOSED OPTIMIZATION ALGORITHM

The surrogate-based analysis and optimization is an effective
tool for the design and optimization of computationally expen-
sive models, and is widely used for airfoil shape optimization,
mechanical structure and so forth. Typically, surrogate models
can be comprehended as a nonlinear inverse problem, which is
to determine a continuous function f of a set of design variables
from a limited amount of available data f. But model estimation
and error assessment are difficult. In this case, the predicted
formula for the FEM output is fp(x) = f̂(x) + ε(x). In this
paper, the Kriging model [13] is adopted to create a surrogate
model and a nongradient heuristic search method [14] is used to
analyze calculated data by the deterministic algorithm. The pro-
posed optimization algorithm is shown as a flowchart in Fig. 4
and is further explained in four steps.
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Fig. 4. Procedure of applying the surrogate modeling method.

A. Step 1—Design of Experiment (DoE)

The DoE is a sampling plan in the design variable space [14],
which is aimed at maximizing the amount of information ac-
quired and minimizing the bias error. At certain sampling points,
there is a clear tradeoff between the number of points selected
and the amount of information that can be extracted from these
points. Due to the computational resource, the number of sam-
ple points is limited severely. On the other hand, the balance
between bias and variance errors shall be found during the con-
struction of the surrogate model. Generally, the bias error can
be reduced through a DOE by distributing the sample points
uniformly in the design space.

One of the most popular DoE for uniform sample distribu-
tion is Latin hypercube sampling (LHS) [15]. For arranging p
samples with n design variables by LHS, the range of each pa-
rameter will be divided into p bins, so that the total number of
pn bins will be generated in the design space. The samples are
randomly selected in the design space, and each sample will
be set randomly inside a bin. Moreover, there is exactly one
sample in each bin for all one dimensional projections of the p
samples and bins. While LHS represents an improvement over
unrestricted stratified sampling [16], it can provide sampling
plans with very different performance. In this paper, the LHS
approach is adopted. An LHS realization of 18 samples for stator
windings with two design variables (ns = 2) and 20 samples for
rotor windings with two design variables (nr = 2). Both rotor
windings and stator windings have an impact on the machine
performance, so an LHS realization of 56 samples for stator and
rotor windings with four design variables (ns&r = 4).

Furthermore, the slot filling factor is one of the limit factors in
winding design. Typically, it depends on the insulation thickness
around the conductors and the slot, as well as the conductor
shape. So this limitation shall be included into the LHS design.

B. Step 2—Numerical Simulation at Sampling Points

It is easily found that winding length and size impact on the
winding resistance. In this paper, the multivariable optimization
issue should consider four variables: stator winding turns, stator

winding cross-sectional area, rotor winding turns, and rotor
winding cross-sectional area. Among the LHS samples, if their
output torque is similar, the sample with a higher efficiency is
selected.

C. Step 3—Construction of the Surrogate Model

Normally, there are two surrogate model construction meth-
ods: parametric (e.g., polynomial regression, Kriging model)
and nonparametric (e.g., projection pursuit regression, radial
basis function) methods. The former assumes the relative global
functional form between the response variable and the design
variable is known while the latter constructs the whole model
by using local models in different data regions.

In recent years, Kriging models are popular in dealing with
computationally expensive engineering problems [17], [18], and
is employed in this study. In the Kriging model, an approxima-
tion expression is given by

y (t) = β + z (t) (21)

where β is a constant, and z(t) is calculated by Gaussian distribu-
tion whose mean and variance are 0 and σ2 , respectively. If ŷ(t)
is defined as the approximation model, and the mean-squared
error of y(t) and ŷ(t) are minimum, satisfying the unbiased
condition. y(t) is estimated as

∧
f(t) =

∧
β +rT (t)R−1(y −

∧
β q) (22)

where R−1 is the inverse of the correlation matrix R, r is the
correlation vector, y is ns observed data vector, and q is the unit
vector. The correlation matrix and correlation vector are

R(tj , tk ) = Exp

[
−

n∑
i=1

θi

∣∣∣tji − tki

∣∣∣2
]

(j = 1, . . . , ns, k = 1, . . . , ns)

r(t) =
[
R(t, t(1)), R(t, t(2)), . . . , R(t, t(ns))

]T
. (23)

The parameters θ1 , θ2 , . . . , θn are unknown, but they can be
calculated by using the following equation.

maximize − [nsln(
∧
σ2) + ln |R|]

2
(24)

where θi(i = 1, 2, . . . ; , n) > 0. θi can be solved by using the
optimization algorithm.

D. Step 4—Particle Swarm Optimization (PSO) Algorithm

In the literature, PSO and genetic algorithm are the two preva-
lent evolutionary algorithms. They can be used in combination
with analytical models [19] and especially the combination with
FEA is gaining popularity [20], [21]. It is also suggested that
PSO performs better in terms of simple implementation and
high computational efficiency with few controlling parameters
[22], [23] and thus used in this paper.

In an optimization case, the PSO can be described as an animal
or particle moving from a certain position at random velocity
in a search field. Within a population (called a swarm), each
particle is treated as a point in a d-dimensional design space.
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Fig. 5. PSO algorithm.

Each particle keeps track of its position in the solution space
that is associated with the fitness value, termed the personal
best (pbest). Meanwhile, there exists a global best fitness value,
called global best (gbest). It is achieved by the whole swarm.
The operation of PSO is to gradually change the velocity of each
particle toward its pbest and gbest positions at each time.

The new velocity and position follow

V k+1
j = wV k

j + C1ϕ1(pk
j − Xk

j ) + C2ϕ2(pk
g − Xk

j ) (25)

where V k
j and Xk

j are the velocity and location of the jth particle
at iteration k; pk

j is the pbest of particle j at the kth iteration; pk
g

is the gbest of the entire swarm at the kth iteration; C1 and C2
are acceleration factors; ϕ1 and ϕ2 are the uniformly distributed
random numbers between 0 and 1; w is the inertia weight that
controls the influence of previous velocity in the new velocity.
Each particle will try to change its position by four variables,
which include the position of the current particle, the velocity
of current particle, the distance between the current position
and pbest, and the distance between the current position and the
gbest. The PSO algorithm is illustrated in Fig. 5.

V. NUMERICAL TESTS AND RESULTS

In this paper, the optimization objective is to design winding
size in order to maximize the machine efficiency as (26), by
taking into account the design constraints.

Objective : Maximum η. (26)

2-D variables are added to machine optimization: winding
diameter D and winding turns N for rotor and stator, respec-
tively. In total, there are six constraints: stator winding turns,
stator winding diameters, rotor winding turns, rotor winding di-

Fig. 6. Shapes of the stator and rotor slots.

Fig. 7. Efficiency contour for stator winding optimization.

ameters, mechanical torque and fill factor. The constraints are
shown in (27).

Constraints T ≥ 360Nm

3.4mm ≥ Ds ≥ 1.5mm

3.4mm ≥ Dr ≥ 1.5mm

24 ≥ Ns ≥ 10

24 ≥ Nr ≥ 10

40% ≥ ff ≥ 20%. (27)

According to the stator and rotor slot design (see Fig. 6),
the stator and rotor slot areas are calculated as 193.25 and
223.28 mm2, respectively. Owing to the filling factor, the stator
slot area of stator slot is available between 38.65 and 77.3 mm2

while the rotor’s available area is between 44.66 and 89.31 mm2.
The test results for the 2-D variables of the stator and rotor

are obtained and plotted. Fig. 7 shows the stator winding opti-
mization function for efficiency with the 2-D variables. Fig. 8
presents the rotor winding optimization for efficiency. As can
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Fig. 8. Efficiency contour for rotor winding optimization.

TABLE II
ORIGINAL DESIGN

Turns Diameter Torque Efficiency

Stator 16 2.34 mm 361.89 Nm 91.61%
Rotor 12 2.97 mm

TABLE III
OPTIMAL DESIGN OF THE STATOR WINDING

Turns Diameter Torque Efficiency

Stator 16 2.48 mm 364 Nm 92%
Rotor 12 2.97 mm

TABLE IV
OPTIMAL DESIGN OF THE ROTOR WINDING

Turns Diameter Torque Efficiency

Stator 16 2.34 mm 361.25 Nm 91.63%
Rotor 16 2.57 mm

TABLE V
OPTIMAL DESIGN FOR BOTH STATOR AND ROTOR WINDINGS

Turns Diameter Torque Efficiency

Stator 14 2.57 mm 361.55 Nm 92.80%
Rotor 10 2.76 mm

be seen that the local peak is optimized from the original point
for both stator and rotor optimization so as to achieve maximum
efficiency.

The proposed algorithm and the original plan are compared
using the test function given in Tables II–V. It is clear that
the proposed algorithm provides excellent results in terms of
speed and accuracy. A winding design with four variables (num-
ber of turns and the diameter of both stator and rotor) is also

Fig. 9. Optimization of DFIG stator and rotor windings. (a) Efficiency dis-
tribution for stator winding optimization. (b) Efficiency distribution for rotor
winding optimization.

TABLE VI
SUMMARY OF FINALIZED MACHINE PARAMETERS

Optimized Parameter Value

Yes Stator winding cross-sectional area 5.19 mm2

Rotor winding cross-sectional area 5.97 mm2

Stator turns 14
Rotor turns 10

No Stator slot number 60
Rotor slot number 48

Winding layer Doubly layer
Stator winding pitch 1–14
Rotor winding pitch 1–12

Winding material Copper 100% IACS
Machine length 1150 mm
Machine width 690 mm
Machine height 600 mm

Stator winding connection 2 delta
Rotor winding connection 2 star

attempted. The optimization results are visually shown in Fig. 9
and summarized in Table VI.

Having established the impacts of the stator and rotor winding
parameters on the efficiency of DFIG, the results based on the
rated condition can provide guidance for selecting the appreciate
stator and rotor windings. However, the DFIG operates mostly
between 1000 and 1457 r/min and thus the winding design
should consider a wider speed range.
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Fig. 10. DFIG machine test rig.

Fig. 11. Experimental results for no load test.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this paper, a 55-kW three-phase DFIG is simulated, proto-
typed and then tested. Its winding design with four variables (the
number of turns and the diameter of both the stator and rotor) is
optimized. In order to have the maximum power output at vari-
able operating conditions, a power loss balance needs to achieve
and the maximum efficiency point needs to move close to the
effective operating condition [24]. Because this is a multimodal
and multivariable optimization problem, it can generate many
maximum efficiency samples. When the efficiency values are
similar between these samples, the point with a higher torque is
selected.

A test rig is set up for experimental validation, as shown
in Fig. 10. A range of experiments are carried out on the ma-
chine including no load and load tests. Fig. 11 presents no-load
test results from subtracting stator copper loss from the input
power. This can be used to find the core loss, frictional and
windage losses. A perfect linear curve indicates a good accuracy
of the experimental setup and measuring equipment. Therefore,
load tests are followed to test the machine from 100% to 50%
load according to the standard procedures [25], [26]. Test re-
sults are presented in Figs. 12 and 13. Fig. 12 shows that the

Fig. 12. Experimental results for load tests.

Fig. 13. Comparison between optimal and original designs.

TABLE VII
55-KW WIND TURBINE TECHNICAL DATA

Turbine
Configuration three-blade, horizontal axis
Rated power 55 kW
Cut-in wind speed 3 m/s
Rated wind speed 11 m/s
Cut-out wind speed 25 m/s

Rotor
Rotor speed 43 r/min
Rotor diameter 19 m
Swept area 290 m2

Power regulation Pitch control
Hub height 19 m

Generator
Type DFIG
Configuration 3 Phase, 380 V, 50 Hz

experimental results agree with simulation results for the DFIG
while Fig. 13 shows the improvement of approximately 1% in
machine efficiency across an operational range than the original
design.

Next, the prototype DFIG is used to calculate the power output
under a field condition to match the specific site. This is achieved
by applying the Weibull function of wind power at Albemarle.
The detailed data are shown in Tables VII and VIII, and the
wind turbine power curve is presented in Fig. 14. Because this
wind turbine adopts the pitch-regulated control, the maximum
power output is capped at 55 kW.
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TABLE VIII
WIND TURBINE POWER OUTPUT

Wind Speed (m/s) Power Output (kW)

1 0.0
2 0.0
3 0.0
4 1.1
5 4.2
6 9.2
7 15.6
8 25.1
9 36.3
10 47.9
11 55.0
12 55.0
13 55.0
14 55.0
15 55.0
16 55.0
17 55.0
18 55.0
19 55.0
20 55.0
21 55.0
22 55.0
23 55.0
24 55.0

Fig. 14. Wind turbine power output curve.

For a given Weibull probability density function (site-
specific), a wind turbine power curve can be attained, and so
is the annual energy production. Based on the wind speed data
and machine performance, the annual wind energy output at the
given wind profile can be found to be approximately 63 MWh,
as shown in Table IX. Compared to the original design of the
DFIG, the machine efficiency is improved by 1%. In that case,
the annual yield increases by about 600 kWh.

VII. CONCLUSION

A surrogate-model-based optimization of a DFIG winding de-
sign for maximizing output power has been presented. The ma-
chine is matched with a specific site taking account of the actual
wind profile and the machine’s operational conditions. The par-
ticle swarm optimization-based surrogate modeling techniques

TABLE IX
ANNUAL WIND POWER OUTPUT

Wind speed (m/s) Wind energy output (kWh)

1 0.0
2 0.0
3 0.0
4 82.77
5 434.42
6 1196.73
7 2366.61
8 4273.64
9 6391.81
10 8299.85
11 8963.79
12 7949.80
13 6721.88
14 5387.29
15 3689.05
16 3020.02
17 1879.21
18 1442.61
19 1103.32
Total 63 203.80

are used in conjunction with the FEM to optimize the machine.
The key refinement parameters are the stator and rotor winding
windings for they are renewed during the repair and rewinding
procedure.

A 55-kW DFIG is simulated and experimentally tested to
check the effectiveness of the proposed techniques. No-load and
load tests have confirmed the numerical and analytical machine
models. The further work will extend to design and test two
large DFIGs which undergo repeated repairs.
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