154 research outputs found
Body Mass Index Differences in the Gut Microbiota Are Gender Specific
Background: The gut microbiota is increasingly recognized as playing an important role in the development of obesity, but the influence of gender remains elusive. Using a large cohort of Chinese adults, our study aimed to identify differences in gut microbiota as a function of body mass index (BMI) and investigate gender specific features within these differences.Methods: Five hundred fifty-one participants were categorized as underweight, normal, overweight, or obese, based on their BMI. Fecal microbiome composition was profiled via 16S rRNA gene sequencing. Generalized linear model (GLM), BugBase, PICRUSt, and SPIEC-EASI were employed to assess the variabilities in richness, diversity, structure, organism-level microbiome phenotypes, molecular functions, and ecological networks of the bacterial community that associated with BMI and sex.Results: The bacterial community of the underweight group exhibited significantly higher alpha diversity than other BMI groups. When stratified by gender, the pattern of alpha diversity across BMI was maintained in females, but no significant difference in alpha diversity was detected among the BMI groups of males. An enrichment of Fusobacteria was observed in the fecal microbiota of obese males, while obese females demonstrated an increased relative abundance of Actinobacteria. Analysis of microbial community-level phenotypes revealed that underweight males tend to have more anaerobic and less facultatively anaerobic bacteria, indicating a reduced resistance to oxidative stress. Functionally, butyrate-acetoacetate CoA-transferase was enriched in obese individuals, which might favor energy accumulation. PhoH-like ATPase was found to be increased in male obese subjects, indicating a propensity to harvest energy. The microbial ecological network of the obese group contained more antagonistic microbial interactions as well as high-degree nodes.Conclusion: Using a large Chinese cohort, we demonstrated BMI-associated differences in gut microbiota composition, functions, and ecological networks, which were influenced by gender. Results in this area have shown variability across several independent studies, suggesting that further investigation is needed to understand the role of the microbiota in modulating host energy harvest and storage, and the impact of sex on these functions
An endoscopie imaging system based on a two-dimensional CMUT array: real-time imaging results
Real-time catheter-based ultrasound imaging tools are needed for diagnosis and image-guided procedures. The continued development of these tools is partially limited by the difficulty of fabricating two-dimensional array geometries of piezoelectric transducers. Using capacitive micromachined ultrasonic transducer (CMUT) technology, transducer arrays with widely varying geometries, high frequencies, and wide bandwidths can be fabricated. A volumetric ultrasound imaging system based on a two-dimensional, 16×l6-element, CMUT array is presented. Transducer arrays with operating frequencies ranging from 3 MHz to 7.5 MHz were fabricated for this system. The transducer array including DC bias pads measures 4 mm by 4.7 mm. The transducer elements are connected to flip-chip bond pads on the array back side with 400-μm long through-wafer interconnects. The array is flip-chip bonded to a custom-designed integrated circuit (IC) that comprises the front-end electronics. Integrating the front-end electronics with the transducer array reduces the effects of cable capacitance on the transducer's performance and provides a compact means of connecting to the transducer elements. The front-end IC provides a 27-V pulser and 10-MHz bandwidth amplifier for each element of the array. An FPGA-based data acquisition system is used for control and data acquisition. Output pressure of 230 kPa was measured for the integrated device. A receive sensitivity of 125 mV/kPa was measured at the output of the amplifier. Amplifier output noise at 5 Mhz is 112 nV/√Hz. Volumetric images of a wire phantom and vessel phantom are presented. Volumetric data for a wire phantom was acquired in real-time at 30 frames per second.Publisher's Versio
Second generation androgen receptor antagonist, TQB3720 abrogates prostate cancer growth via AR/GPX4 axis activated ferroptosis
Purpose: Prostate cancer (PCa) poses a great threat to humans. The study aimed to evaluate the potential of TQB3720 in promoting ferroptosis to suppress prostate cancer, providing a theoretical basis for PCa therapy.Methods: PCa cells and nude mice models were divided into TQB3720, enzalutamide (ENZ), and control groups. Sulforhodamine B assay, colony formation assessment, organoids culture system, and the CCK8 assay were used for detecting proliferation. Western blot assay was processed to detect the expression of androgen receptor (AR), ferroptosis, and apoptosis-related genes. Flow cytometry was applied to measure the intracellular ROS levels. ELISA was performed to determine the cellular oxidized glutathione (GSSG) and malondialdehyde (MDA) levels. RT-qPCR was conducted to detect the mRNA expression of genes in AR signaling. BODIPYTM™ 581/591 was processed for detection of intracellular lipid peroxidation levels. The interaction of AR with other translational factor complex proteins was explored using Co-immunoprecipitation (Co-IP), and the chromatin immunoprecipitation (ChIP) assay was performed to detect the binding of AR-involved translational complex to downstream genes promoter. Luciferase reporter assay was conducted to examine the translation activity of GPX4 promoter, and immunohistochemistry (IHC) was conducted to analyze the levels of c-MYC, Ki-67 and AR in TQB3720-treated cancer tissues.Results: Here, we found TQB3720 inhibits the growth of prostate cancer in vitro and in vivo. TQB3720 treatment induced intracellular levels of GSSG and MDA significantly, by which hints AR antagonist caused ferroptosis-related cell death. Moreover, molecular evidence shown TQB3720 regulates downstream of AR signaling by binding AR resulting in inhibition of AR entry into the nucleus. Additional, we also proved that TQB3720 abrogates the interaction between AR and SP1 and leads to decrease GPX4 transcription.Conclusion: TQB3720 promotes ferroptosis in prostate cancer cells by reducing the AR/SP1 transcriptional complex binding to GPX4 promoter. As a result, it is suggested to be a potential drug for clinic prostate cancer treatment
Androgen deprivation therapy plus abiraterone or docetaxel as neoadjuvant therapy for very-high-risk prostate cancer: a pooled analysis of two phase II trials
Objective: The study aimed to compare the efficacy and safety of androgen deprivation therapy (ADT) with abiraterone or docetaxel versus ADT alone as neoadjuvant therapy in patients with very-high-risk localized prostate cancer.Methods: This was a pooled analysis of two single-center, randomized, controlled, phase II clinical trials (ClinicalTrials.gov: NCT04356430 and NCT04869371) conducted from December 2018 to March 2021. Eligible participants were randomly assigned to the intervention (ADT plus abiraterone or docetaxel) and control (ADT alone) groups at a 2:1 ratio. Efficacy was evaluated by pathological complete response (pCR), minimal residual disease (MRD), and 3-year biochemical progression-free survival (bPFS). Safety was also analyzed.Results: The study included 42 participants in the ADT group, 47 in the ADT plus docetaxel group, and 48 in the ADT plus abiraterone group. A total of 132 (96.4%) participants had very-high-risk prostate cancer, and 108 (78.8%) had locally advanced disease. The ADT plus docetaxel group (28%) and ADT plus abiraterone group (31%) had higher rates of pCR or MRD (p = 0.001 and p < 0.001) compared with the ADT group (2%). The 3-year bPFS was 41.9% (95% CI: 26.6–57.2), 51.1% (95% CI: 36.8–65.4), and 61.2% (95% CI: 45.5–76.9), respectively. Significant difference was found among groups in terms of bPFS (p = 0.037).Conclusion: Compared with ADT alone, neoadjuvant therapy with ADT plus docetaxel or abiraterone could achieve better pathological outcomes (pCR or MRD) for very-high-risk localized prostate cancer. The ADT plus abiraterone group showed longer bPFS than ADT alone. The combination regimens were tolerable
Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite
As China's first X-ray astronomical satellite, the Hard X-ray Modulation
Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15,
2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy
satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was
designed to perform pointing, scanning and gamma-ray burst (GRB) observations
and, based on the Direct Demodulation Method (DDM), the image of the scanned
sky region can be reconstructed. Here we give an overview of the mission and
its progresses, including payload, core sciences, ground calibration/facility,
ground segment, data archive, software, in-orbit performance, calibration,
background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech.
Astron. arXiv admin note: text overlap with arXiv:1910.0443
Potential of Core-Collapse Supernova Neutrino Detection at JUNO
JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
Detection of the Diffuse Supernova Neutrino Background with JUNO
As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
- …