100 research outputs found

    Suomi NPP VIIRS DNB and RSB M Bands Detector-To-Detector and HAM Side Calibration Differences Assessment Using a Homogenous Ground Target

    Get PDF
    Near-nadir observations of the Libya 4 site from the S-NPP VIIRS Day-Night Band (DNB) and Moderate resolution Bands (M bands) are used to assess the detector calibration stability and half-angle mirror (HAM) side differences. Almost seven years of Sensor Data Records products are extracted from the Libya 4 site center over an area of 3232 pixels. The mean values of the radiance from individual detectors per HAM side are computed separately. The comparison of the normalized radiance between detectors indicates that the detector calibration differences are wavelength dependent and the differences have been slowly increasing with time for short wavelength bands, especially for M1-M4. The maximum annual average differences between DNB detectors are 0.77% in 2017 at HAM-A. For the M bands, the maximum detector differences in 2017 are 1.7% for M1, 1.8% for M2, 1.3% for M3, 1.2% for M4, 0.67% for M5, 0.75% for M7, 0.57% for M8, 13% for M9, 0.63% for M10, and 0.66% for M11. The average HAM side A to B difference in 2017 are 0.00% for DNB, 0.22% for M1, 0.17% for M2, 0.15% for M3, 0.09% for M4, -0.07% for M5, 0.02% for M7, 0.01% for M8, 1.4% for M9, 0.01% for M10, and 0.03% for M11. Results for M6 are not available due to the signal saturation and M9 results are not accurate because of the low reflectance from the desert site and the strong atmospheric absorption in this channel. The results in this study help scientists better understand each detectors performance and HAM side characteristics. Additionally, they provide evidence and motivation for future VIIRS calibration improvements

    Validation of S-NPP VIIRS Day-Night Band and M Bands Performance Using Ground Reference Targets of Libya 4 and Dome C

    Get PDF
    This paper provides methodologies developed and implemented by the NASA VIIRS Calibration Support Team (VCST) to validate the S-NPP VIIRS Day-Night band (DNB) and M bands calibration performance. The Sensor Data Records produced by the Interface Data Processing Segment (IDPS) and NASA Land Product Evaluation and Algorithm Testing Element (PEATE) are acquired nearly nadir overpass for Libya 4 desert and Dome C snow surfaces. In the past 3.5 years, the modulated relative spectral responses (RSR) change with time and lead to 3.8% increase on the DNB sensed solar irradiance and 0.1% or less increases on the M4-M7 bands. After excluding data before April 5th, 2013, IDPS DNB radiance and reflectance data are consistent with Land PEATE data with 0.6% or less difference for Libya 4 site and 2% or less difference for Dome C site. These difference are caused by inconsistent LUTs and algorithms used in calibration. In Libya 4 site, the SCIAMACHY spectral and modulated RSR derived top of atmosphere (TOA) reflectance are compared with Land PEATE TOA reflectance and they indicate a decrease of 1.2% and 1.3%, respectively. The radiance of Land PEATE DNB are compared with the simulated radiance from aggregated M bands (M4, M5, and M7). These data trends match well with 2% or less difference for Libya 4 site and 4% or less difference for Dome C. This study demonstrate the consistent quality of DNB and M bands calibration for Land PEATE products during operational period and for IDPS products after April 5th, 2013

    Dynamic Instability Analysis of a Rotating Ship Shaft under a Periodic Axial Force by Discrete Singular Convolution

    Get PDF
    Dynamic instability of a rotating ship shaft subjected to a periodic axial force is studied by using discrete singular convolution (DSC) with regularized Shannon's delta kernel. The excitation frequency is related to the spinning speed and the number of blades on the propeller. Effects of number of blades, constant term in the periodic force, and damping on dynamic instability regions are investigated. The results have shown that the increase of number of blades and damping could improve the dynamic stability of rotating shaft with damping. The increase of constant term in the periodic force leads to dynamic instability regions shifting to lower frequencies, making the shaft more sensitive to periodic force. Those dynamic instability regions obtained by DSC method have been compared with those by Floquet's method to verify the application of DSC method to dynamic instability analysis of rotating ship shaft

    O-GlcNAcylation of G6PD Promotes the Pentose Phosphate Pathway and Tumor Growth

    Get PDF
    The pentose phosphate pathway (PPP) plays a critical role in macromolecule biosynthesis and maintaining cellular redox homoeostasis in rapidly proliferating cells. Upregulation of the PPP has been shown in several types of cancer. However, how the PPP is regulated to confer a selective growth advantage on cancer cells is not well understood. Here we show that glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, is dynamically modified with an O-linked b-N-acetylglucosamine sugar in response to hypoxia. Glycosylation activates G6PD activity and increases glucose flux through the PPP, thereby providing precursors for nucleotide and lipid biosynthesis, and reducing equivalents for antioxidant defense. Blocking glycosylation of G6PD reduces cancer cell proliferation in vitro and impairs tumor growth in vivo. Importantly, G6PD glycosylation is increased in human lung cancers. Our findings reveal a mechanistic understanding of how O-glycosylation directly regulates the PPP to confer a selective growth advantage to tumours

    Ecological risk of microplastic toxicity to earthworms in soil: A bibliometric analysis

    Get PDF
    Accumulation of microplastics (MPs) in soil is a serious environmental concern. Addition of exogenous MPs can alter structure and physicochemical properties of and material transport in soil. MPs are particularly toxic to earthworms, which are soil ecosystem engineers, and exacerbate ecological risks; however, there is a lack of comprehensive and in-depth analyses of how MPs exhibit toxicity to/towards earthworms. In this study, we report a bibliometric analysis of 77 peer-reviewed papers published before December 2021 to systematically analyze how the addition of exogenous MPs contributes to earthworm toxicity and clarify the historical development and research hotspots in this field. We found that first, polyethylene and polystyrene are the most common materials used to study the toxic effects of MPs on earthworms. Second, the toxic mechanisms of MPs on earthworms mainly involve histopathological damage and oxidative stress, as well as serving as carriers of complex pollutants (e.g., heavy metals and organic pollutants) through combined adsorption–desorption. Third, oxidative stress is the typical reaction process of MPs toxicity in earthworms. When the content of MPs in soil exceeds 0.1%, earthworm growth is affected, and oxidative stress is induced, resulting in neural and DNA damage. Based on published studies, the prospects for future research on the ecological risks posed by MPs to earthworms have also been discussed. Overall, our findings help clarify the ecological risk of soil MPs toxicity to earthworms, reveal the mechanism of their toxic effects, and provide a theoretical basis for future studies focusing on establishing a healthy and ecologically sustainable soil environment

    WldS Reduces Paraquat-Induced Cytotoxicity via SIRT1 in Non-Neuronal Cells by Attenuating the Depletion of NAD

    Get PDF
    WldS is a fusion protein with NAD synthesis activity, and has been reported to protect axonal and synaptic compartments of neurons from various mechanical, genetic and chemical insults. However, whether WldS can protect non-neuronal cells against toxic chemicals is largely unknown. Here we found that WldS significantly reduced the cytotoxicity of bipyridylium herbicides paraquat and diquat in mouse embryonic fibroblasts, but had no effect on the cytotoxicity induced by chromium (VI), hydrogen peroxide, etoposide, tunicamycin or brefeldin A. WldS also slowed down the death of mice induced by intraperitoneal injection of paraquat. Further studies demonstrated that WldS markedly attenuated mitochondrial injury including disruption of mitochondrial membrane potential, structural damage and decline of ATP induced by paraquat. Disruption of the NAD synthesis activity of WldS by an H112A or F116S point mutation resulted in loss of its protective function against paraquat-induced cell death. Furthermore, WldS delayed the decrease of intracellular NAD levels induced by paraquat. Similarly, treatment with NAD or its precursor nicotinamide mononucleotide attenuated paraquat-induced cytotoxicity and decline of ATP and NAD levels. In addition, we showed that SIRT1 was required for both exogenous NAD and WldS-mediated cellular protection against paraquat. These findings suggest that NAD and SIRT1 mediate the protective function of WldS against the cytotoxicity induced by paraquat, which provides new clues for the mechanisms underlying the protective function of WldS in both neuronal and non-neuronal cells, and implies that attenuation of NAD depletion may be effective to alleviate paraquat poisoning

    Second-Generation Sequencing Supply an Effective Way to Screen RNAi Targets in Large Scale for Potential Application in Pest Insect Control

    Get PDF
    The key of RNAi approach success for potential insect pest control is mainly dependent on careful target selection and a convenient delivery system. We adopted second-generation sequencing technology to screen RNAi targets. Illumina's RNA-seq and digital gene expression tag profile (DGE-tag) technologies were used to screen optimal RNAi targets from Ostrinia furnalalis. Total 14690 stage specific genes were obtained which can be considered as potential targets, and 47 were confirmed by qRT-PCR. Ten larval stage specific expression genes were selected for RNAi test. When 50 ng/µl dsRNAs of the genes DS10 and DS28 were directly sprayed on the newly hatched larvae which placed on the filter paper, the larval mortalities were around 40∼50%, while the dsRNAs of ten genes were sprayed on the larvae along with artificial diet, the mortalities reached 73% to 100% at 5 d after treatment. The qRT-PCR analysis verified the correlation between larval mortality and the down-regulation of the target gene expression. Topically applied fluorescent dsRNA confirmed that dsRNA did penetrate the body wall and circulate in the body cavity. It seems likely that the combination of DGE-tag with RNA-seq is a rapid, high-throughput, cost less and an easy way to select the candidate target genes for RNAi. More importantly, it demonstrated that dsRNAs are able to penetrate the integument and cause larval developmental stunt and/or death in a lepidopteron insect. This finding largely broadens the target selection for RNAi from just gut-specific genes to the targets in whole insects and may lead to new strategies for designing RNAi-based technology against insect damage

    An evidence-based framework for predicting the impact of differing autotroph-heterotroph thermal sensitivities on consumer-prey dynamics

    Get PDF
    Increased temperature accelerates vital rates, influencing microbial population and wider ecosystem dynamics, for example, the predicted increases in cyanobacterial blooms associated with global warming. However, heterotrophic and mixotrophic protists, which are dominant grazers of microalgae, may be more thermally sensitive than autotrophs, and thus prey could be suppressed as temperature rises. Theoretical and meta-analyses have begun to address this issue, but an appropriate framework linking experimental data with theory is lacking. Using ecophysiological data to develop a novel model structure, we provide the first validation of this thermal sensitivity hypothesis: increased temperature improves the consumer’s ability to control the autotrophic prey. Specifically, the model accounts for temperature effects on auto- and mixotrophs and ingestion, growth and mortality rates, using an ecologically and economically important system (cyanobacteria grazed by a mixotrophic flagellate). Once established, we show the model to be a good predictor of temperature impacts on consumer–prey dynamics by comparing simulations with microcosm observations. Then, through simulations, we indicate our conclusions remain valid, even with large changes in bottom-up factors (prey growth and carrying capacity). In conclusion, we show that rising temperature could, counterintuitively, reduce the propensity for microalgal blooms to occur and, critically, provide a novel model framework for needed, continued assessment

    Complete mitochondrial genome of Lasiommata deidamia and its phylogenetic implication to subfamily Satyrinae (Lepidoptera: Nymphalidae)

    No full text
    Lasiommata deidamia Eversmann taxonomically belongs to lepidopteran family Nymphalidae Rafinesque, 1815. The Complete mitochondrial genome (mitogenome) of the insect had been sequenced, with 15,244 bp of total length that has 81.12% AT content and contains a typical set of genes (13 protein-coding genes (PCGs), 22 tRNA genes and 2 rRNA genes) and a 417 bp AT-rich region. Another, 11 intergenic spacers (139 bp in total) and 16 overlaps (175 bp in total) have been founded. The longest interval is located between trnGln and nad2 while the maximum overlap is between trnHis and nad4. All PCG genes are started with the ATN codons and stop at TAA codons except cox1 which uses CGA as the initiation codon. No tandem repeat has been found in the AT-rich region. The phylogenetic tree inferred with Bayesian Inference based on all the 13 protein sequences of 45 mitogeomes reveals the phylogenetic relationships of the taxa in the subfamily Styrinae is (((Satyrini + Ypthimini) + (Amathusiini + Elymniini)) + Melanitini) and that within tribe Satyrini is ((((Lethina + Parargina) + Mycalesina) + Coenonymphina) +(Satyrina + (Melanargiina + Maniolina)))
    • …
    corecore