1,774 research outputs found

    Effects of Quercetin on Alleviating Dietary Lead (Pb)-Induced Growth Retardation and Oxidative Stress in Juvenile Tilapia (Oreochromis niloticus)

    Get PDF
    This trial spanning 28 days, was conducted to investigate the effects of quercetin on alleviating dietary lead (Pb)-induced growth retardation and oxidative stress in juvenile tilapia (Oreochromis niloticus). Four hundred fish were randomly divided into four treatments with four replicates in each group, 25 fish in each replicate. The four treatments were: control treatment (fed with a basal diet), Pb treatment (fed with a basal diet+800 mg Pb/kg), Pb+Q1 treatment (fed with a basal diet+800 mg Pb/kg+800 mg quercetin/kg), and Pb+Q2 treatment (fed with a basal diet+800 mg Pb/kg+1600 mg quercetin/kg). Compared with the control treatment, final body weight, weight gain rate and feed conversion rate of Pb treatment were significantly affected (P0.05). Survival rate of all treatments was similar (P>0.05). Malondialdehyde level, total antioxidation capacity level, and activity of superoxide dismutase, catalase and glutathione peroxidase in hepatopancreas of Pb treatment were significantly affected (P0.05).Results indicated that dietary quercetin supplementation could ameliorate the harmful effects of dietary Pb exposure on growth and effectively normalize antioxidant status in hepatopancreas of tilapia

    Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nonstructural protein 1 (NSP1) of rotavirus has been reported to block interferon (IFN) signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs) and (or) the β-transducin repeat containing protein (β-TrCP). However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms.</p> <p>Results</p> <p>The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s) other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I), but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS), indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way.</p> <p>Conclusions</p> <p>Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.</p

    Investigation of Electron-Phonon Coupling in Epitaxial Silicene by In-situ Raman Spectroscopy

    Full text link
    In this letter, we report that the special coupling between Dirac fermion and lattice vibrations, in other words, electron-phonon coupling (EPC), in silicene layers on Ag(111) surface was probed by an in-situ Raman spectroscopy. We find the EPC is significantly modulated due to tensile strain, which results from the lattice mismatch between silicene and the substrate, and the charge doping from the substrate. The special phonon modes corresponding to two-dimensional electron gas scattering at edge sites in the silicene were identified. Detecting relationship between EPC and Dirac fermion through the Raman scattering will provide a direct route to investigate the exotic property in buckled two-dimensional honeycomb materials.Comment: 15 pages, 4 figure

    Gas exchange and morpho-physiological response of soybean to straw mulching under drought conditions

    Get PDF
    A pot experiment was conducted to investigate the morphological, physiological and biochemical straw mulch-induced response of soybean under water-deficit conditions. Soybean (Glycine max L. Merrill) variety “Xidou 7” was treated with varying quantity of wheat straw mulch viz: (control (no straw mulch), 3750, 7500, 11000 and 14750 kg/ha) under water-deficit conditions. The experimental results indicate that the varying quantity of straw mulch significantly improved the plant growth in terms of plant height, leaf area, number of leaves/plant and stem diameter. Mulch treatment also significantly enhanced the photosynthesis (PN), intercellular CO2 concentration (Ci), transpiration rate (E) and stomatal conductance (gs) over the control. The gas exchange parameters were improved depending on the quantity of wheat straw mulch; significantly highPN and E was observed in the treatment where wheat straw was applied at the rate of 11000 kg/ha. Wheat straw mulch treatments led to noticeable reduction in malondialdehyde (MDA) contents, which protected the drought stressed soybean plants from membrane damage. Furthermore, the free proline contents linearly increased with increase in straw mulch quantity. It is evident that wheat straw mulch can considerably modulate growth, photosynthetic and physio-biochemical attributes of soybean under drought. The research will effectively solve seasonal drought problem and can provide technical assistance for sustainable agriculture development.Keywords: Soybean, growth, water-deficit, wheat straw mulchAfrican Journal of Biotechnology Vol. 12(18), pp. 2360-236

    An earthworm protease cleaving serum fibronectin and decreasing HBeAg in HepG2.2.15 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Virus-binding activity is one of the important functions of fibronectin (FN). It has been reported that a high concentration of FN in blood improves the transmission frequency of hepatitis viruses. Therefore, to investigate a protease that hydrolyzes FN rapidly is useful to decrease the FN concentration in blood and HBV infection. So far, however, no specific protease digesting FN in serum has been reported.</p> <p>Methods</p> <p>We employed a purified earthworm protease to digest serum proteins. The rapidly cleaved protein (FN) was identified by MALDI-TOF MS and western blotting. The cleavage sites were determined by N-terminus amino acid residues sequencing. The protease was orally administrated to rats to investigate whether serum FN <it>in vivo </it>became decreased. The serum FN was determined by western blotting and ELISA. In cytological studies, the protease was added to the medium in the culture of HepG2.2.15 cells and then HBsAg and HBeAg were determined by ELISA.</p> <p>Results</p> <p>The protease purified from earthworm <it>Eisenia fetida </it>was found to function as a fibronectinase (FNase). The cleavage sites on FN by the FNase were at R and K, exhibiting a trypsin alkaline serine-like function. The earthworm fibronectinase (EFNase) cleaved FN at four sites, R<sub>259</sub>, R<sub>1005</sub>, K<sub>1557 </sub>and R<sub>2039</sub>, among which the digested fragments at R<sub>259</sub>, K<sub>1557 </sub>and R<sub>2039 </sub>were related to the virus-binding activity as reported. The serum FN was significantly decreased when the earthworm fibronectinase was orally administrated to rats. The ELISA results showed that the secretion of HBeAg from HepG2.2.15 cells was significantly inhibited in the presence of the FNase.</p> <p>Conclusion</p> <p>The earthworm fibronectinase (EFNase) cleaves FN much faster than the other proteins in serum, showing a potential to inhibit HBV infection through its suppressing the level of HBeAg. This suggests that EFNase is probably used as one of the candidates for the therapeutic agents to treat hepatitis virus infection.</p

    RFormer: Transformer-based Generative Adversarial Network for Real Fundus Image Restoration on A New Clinical Benchmark

    Full text link
    Ophthalmologists have used fundus images to screen and diagnose eye diseases. However, different equipments and ophthalmologists pose large variations to the quality of fundus images. Low-quality (LQ) degraded fundus images easily lead to uncertainty in clinical screening and generally increase the risk of misdiagnosis. Thus, real fundus image restoration is worth studying. Unfortunately, real clinical benchmark has not been explored for this task so far. In this paper, we investigate the real clinical fundus image restoration problem. Firstly, We establish a clinical dataset, Real Fundus (RF), including 120 low- and high-quality (HQ) image pairs. Then we propose a novel Transformer-based Generative Adversarial Network (RFormer) to restore the real degradation of clinical fundus images. The key component in our network is the Window-based Self-Attention Block (WSAB) which captures non-local self-similarity and long-range dependencies. To produce more visually pleasant results, a Transformer-based discriminator is introduced. Extensive experiments on our clinical benchmark show that the proposed RFormer significantly outperforms the state-of-the-art (SOTA) methods. In addition, experiments of downstream tasks such as vessel segmentation and optic disc/cup detection demonstrate that our proposed RFormer benefits clinical fundus image analysis and applications. The dataset, code, and models are publicly available at https://github.com/dengzhuo-AI/Real-FundusComment: IEEE J-BHI 2022; The First Benchmark and First Transformer-based Method for Real Clinical Fundus Image Restoratio
    corecore