4,450 research outputs found

    Anomalous pressure behavior of tangential modes in single-wall carbon nanotubes

    Full text link
    Using the molecular dynamics simulations and the force constant model we have studied the Raman-active tangential modes (TMs) of a (10, 0) single-wall carbon nanotube (SWNT) under hydrostatic pressure. With increasing pressure, the atomic motions in the three TMs present obvious diversities. The pressure derivative of E1g, A1g, and E2g mode frequency shows an increased value (), a constant value (), and a negative value () above 5.3 GPa, respectively. The intrinsic characteristics of TMs consumedly help to understand the essence of the experimental T band of CNT. The anomalous pressure behavior of the TMs frequencies may be originated from the tube symmetry alteration from D10h to D2h then to C2h.Comment: 15 pages, 3 pages, submitted to Phys. Rev.

    Reaction Behaviors of Bagasse Modified with Phthalic Anhydride in 1‐Allyl‐3‐Methylimidazolium Chloride with Catalyst 4‐Dimethylaminopyridine

    Get PDF
    The modification of lignocellulose with cyclic anhydrides could confer stronger hydrophilic properties to lignocellulose, which could be used in many industrial fields. To elucidate the modification mechanism of lignocellulose, bagasse was phthalated comparatively with its three main components in 1‐allyl‐3‐methylimidazolium chloride (AmimCl) using 4‐dimethylaminopyridine as catalyst and phthalic anhydride as acylation reagent in the present study. From FT‐IR and 2D HSQC analyses, the skeleton of bagasse and the fractions were not significantly changed during phthalation in AmimCl. 2D HSQC results suggested that the reactive hydroxyls in bagasse were partially phthalated, and the reactivity of the hydroxyls in anhydroglucose units followed the order C‐6 > C‐2 > C‐3. Similarly, the reactivity order of hydroxyls in anhydroxylose units was C‐2 > C‐3. For lignin, the predominant diesterification occurred during the homogeneous modification, and both aliphatic and aromatic hydroxyls were phthalated. The reactivity order of phenolic hydroxyls was S‐OH > G‐OH > H‐OH, which was distinct from that without catalyst. In addition, it was found that the thermal stability of phthalated bagasse was affected by the disruption of cellulose crystallinity and the degradation of components. The thermal stability of the phthalated bagasse decreased upon chemical modification and regeneration

    Portal Vein Thrombosis in Liver Cirrhosis

    Get PDF
    In liver cirrhosis, portal vein thrombosis (PVT), which is defined as thrombosis that occurs within the main portal vein and intrahepatic portal branches, is one of the most common complications. High incidence of PVT in the setting of liver cirrhosis is mainly due to hypercoagulable state and altered dynamic of blood flow in the portal vein. The clinical manifestations of PVT are variable among different patients, so the diagnosis of PVT is mainly dependent on the imaging examinations, like ultrasound, computed tomography and magnetic resonance imaging. The overall goal of treatment for PVT can be summarized as reducing risk factors of PVT, thus to prevent further expansion of thrombus and maintain portal patency and prevent and treat the symptoms of PVT by anticoagulants, local thrombolysis, transjugular intrahepatic portosystemic shunt and/or surgery. In future, due to the progress in vascular imaging and innovation in clinical anti-thrombotic drug, PVT could be prevented and cured effectively

    Isomeric excitation of ^{229}\mathrm{Th} via scanning tunneling microscope

    Full text link
    The low energy of the isomeric state of the radionuclide thorium-229 (229Th) makes it highly promising for applications in fundamental physics, precision metrology, and quantum technologies. However, directly accessing the isomeric state from its ground state remains a challenge. We propose here a tabletop approach utilizing the scanning tunneling microscope (STM) technique to induce excitation of a single 229Th nucleus. With achievable parameters, the isomeric excitation rate is advantageous over existing methods, allowing the excitation and control of 229Th on the single-nucleus level. It offers the unique potential of exciting and detecting subsequent decay from a single nucleus, providing a new direction for future experimental investigation of the 229Th isomeric state

    Quantifying consensus of rankings based on q-support patterns

    Get PDF
    Rankings, representing preferences over a set of candidates, are widely used in many information systems, e.g., group decision making and information retrieval. It is of great importance to evaluate the consensus of the obtained rankings from multiple agents. An overall measure of the consensus degree provides an insight into the ranking data. Moreover, it could provide a quantitative indicator for consensus comparison between groups and further improvement of a ranking system. Existing studies are insufficient in assessing the overall consensus of a ranking set. They did not provide an evaluation of the consensus degree of preference patterns in most rankings. In this paper, a novel consensus quantifying approach, without the need for any correlation or distance functions as in existing studies of consensus, is proposed based on a concept of q-support patterns of rankings. The q-support patterns represent the commonality embedded in a set of rankings. A method for detecting outliers in a set of rankings is naturally derived from the proposed consensus quantifying approach. Experimental studies are conducted to demonstrate the effectiveness of the proposed approach
    • 

    corecore