
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Quantifying consensus of rankings based on q-support
patterns

Zhengui Xue, Zhiwei Lin⇤, Hui Wang, Sally McClean
School of Computing, University of Ulster, United Kingdom

Abstract

Rankings, representing preferences over a set of candidates, are widely used in many

applications, e.g., group decision making and information retrieval. Rankings may be

obtained by different agents (humans or systems). It is often necessary to evaluate con-

sensus of obtained rankings from multiple agents, as a measure of consensus provides

insights into the rankings. Moreover, a consensus measure could provide a quantitative

basis for comparing groups and for improving a ranking system. Existing studies on

consensus measurement are insufficient, since they did not evaluate consensus among

most rankings or consensus with respect to specific preference patterns. In this paper, a

novel consensus quantifying approach, without the use of correlation or distance func-

tions as in existing studies of consensus, is proposed based on the concept of q-support

patterns, which represent the commonality embedded in a set of rankings. A pattern

is regarded as a q-support pattern if it is included by at least q rankings in the rank-

ing set. A method for detecting outliers in a set of rankings is naturally derived from

the proposed consensus quantifying approach. Experimental studies are conducted to

demonstrate the effectiveness of the proposed approach.
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1. Introduction

Extensive studies have been carried out in social science to measure group co-

hesion, in order to gain insight into the factors affecting group cohesion and further

promote higher group consistency (see, e.g., [21, 7, 35, 10]). In artificial intelligence,

rankings have been widely used to represent the preferences of agents (humans or sys-5

tems) over a set of candidates in many information systems, such as group decision

making [27, 34, 43] and information retrieval [22, 29, 33]. It is important to evaluate

the degree to which the rankings obtained by different agents agree, as it would help to

understand the obtained rankings. Quantifying the consensus of the obtained rankings

can provide an accurate evaluation about the overall agreement. It is also a quantitative10

indicator for comparing consensus between groups (e.g., two sets of rankings) [4] or

for further improving the ranking systems. For example, in group decision making, if

the consensus score is extremely low, it is necessary for the experts to adjust their rank-

ings in order to reach an agreement [27]. However, to the best of our knowledge, there

are only a few existing studies [1, 2, 4, 13, 16, 17] on consensus evaluation for a set of15

rankings.

In the literature, rank correlation and distance functions, such as Kendall’s ⌧ [26]

and Spearman’s ⇢ [37], are used to measure the correlation and disagreement of two

rankings. Kendall’s ⌧ measures the correlation of two rankings by considering their

concordant and discordant pairs, and Spearman’s ⇢ evaluates the rank correlation by20

taking into account the positions of the items in two rankings. The Kemeny distance

[25] is extended to measure pairwise disagreements in two rankings. For a set with

more than two rankings, the related concepts are consensus and diversity of rankings.

Consensus is also used interchangeably for cohesiveness [2]. Existing approaches mea-

sure consensus of rankings by considering the similarity of preferences in a group based25

on rank correlation functions. One typical approach as discussed in [2] is to calculate

the similarity for each pair of rankings based on correlation functions, such as Kendall’s

⌧ and Spearman’s ⇢, and then aggregate the obtained results. Diversity and consensus

are considered as two opposite concepts about rankings in social choice theory [24].

Research was carried out to measure the diversity of a ranking set based on distance30
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functions (see [16]). These existing studies are not sufficient in evaluating the overall

consensus of a ranking set. It is difficult to use the rank correlation or distance functions

based approaches to completely quantify the level of consensus for a set of rankings.

As pointed out in [12], the pairwise comparison reflects the degree of commonality in

two rankings, and consequently the aggregated result of the pairwise comparisons is35

not informative enough to tell the degree to which the ranking set agrees. In reality, it

is often the case that certain preference patterns are embedded in most of the rankings

obtained for a task. The existing work cannot tell the degree to which preferences over

candidates are shared by the majority of the rankings. In addition, they did not provide

a solution to identifying the majority of rankings in order to filter irrelevant results in40

the ranking set, which could play an important role in modern information systems.

For instance, in query expansion [6], it is reasonable to expand a query for ‘film’ to

its relevant query ‘movie’ in the context of entertainment, but not in the context of ‘a

thin coat or layer’. It is impossible to manually check if the expansions from the source

query are consistent as there is no ground truth available and moreover the meaning of45

the queries may evolve from time to time (e.g, ‘apple’ in fruit context to the context

of cooperation). Therefore, using the rankings obtained from the expansions to under-

stand the extent to which the query expansions provide high level of consistency is key

to provide good search results.

This paper studies the consensus degree of a ranking set from a different perspective50

to provide a full picture on the degree to which a set of rankings mutually agree. A novel

framework is proposed to analyze consensus of rankings by considering the common

patterns embedded in a ranking set. A new concept of q-support patterns is introduced

to represent how common patterns are embedded in rankings, by which the preferences

of a group over candidates can be expressed at a subtle and fine-grained level. A pattern55

is regarded as a q-support pattern if it is included by at least q rankings in the ranking

set. Thus, a q-support pattern represents the partial coverage of the pattern by rankings,

where the integer q can be specified as needed when a ranking system is evaluated. The

consensus degree of rankings is quantified based on q-support patterns. Compared with

the existing work based on correlation or distance functions, this new approach gives a60

finer characterization and quantification of the commonality embedded in the rankings.

3
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The contributions of this paper are: (1) a new representation of the commonality

within a set of rankings, q-support pattern, is proposed; (2) a new framework (non-

distance and non-correlation) for quantifying consensus with q-support patterns is in-

troduced; (3) an efficient algorithm is developed to calculate consensus scores and char-65

acterize the set of q-support patterns; (4) consensus scores are defined for each ranking

to reflect its relationship with the other rankings, which can be used to detect outliers in

a ranking set; (5) extensive experiments have been conducted to show the effectiveness

and usefulness of the proposed approach.

The rest of the paper is organized as follows. In Section 2, related work on the70

comparison of two rankings and the measure of consensus and diversity of a ranking set

is reviewed. In Section 3, the q-support pattern of rankings is formulated and consensus

scores are defined based on it. An algorithm is then introduced to calculate ranking

consensus. In Section 4, weighted consensus scores are defined. In Section 5, an outlier

detection method is developed. Section 6 gives experimental studies to evaluate the75

proposed approach. Section 7 concludes this paper.

2. Related work

Rank correlation and distance functions. Historically developed by Maurice Kendall

in 1938 [26], Kendall’s ⌧ measures the correlation between two rankings by consid-

ering the numbers of pairwise items ranked in same orders and in opposite orders.80

Suppose that we consider rankings over candidates {�1,�2, · · · ,�n}. A ranking is an

ordered list in which items in higher positions are more preferred than items in lower

positions. Let ⇡(·, ·) be the position function. The function ⇡(�i, rl) returns the posi-

tion of item �i in ranking rl. Kendall’s ⌧ for two rankings rl and rz is

⌧(rl, rz) =

P
i,j2{1,··· ,n}

i<j

sgn(⇡(�i, rl)� ⇡(�j , rl))sgn(⇡(�i, rz)� ⇡(�j , rz))

n(n� 1)/2
.

This coefficient is in the range �1  ⌧(rl, rz)  1, where value 1 corresponds to the85

case that the two rankings are in the same order and value �1 indicates that one ranking

is in the reverse order of the other.

4
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Spearman’s ⇢ proposed by Charles Spearman in 1904 [37] is defined based on the

positions of each item in two rankings as follows

⇢(rl, rz) =

nP
i=1

(⇡(�i, rl)� ⇡̄l)(⇡(�i, rz)� ⇡̄z)

s
nP

i=1
(⇡(�i, rl)� ⇡̄l)2

nP
i=1

(⇡(�i, rz)� ⇡̄z)2

,

where ⇡̄l =
1
n

nP
i=1

⇡(�i, rl) and ⇡̄z = 1
n

nP
i=1

⇡(�i, rz). Similarly, this coefficient satis-

fies �1  ⇢(rl, rz)  1.

These rank correlation functions do not take into account the varying relevance of90

ranked items in different positions. They are not suitable for evaluating the rankings

where items at the top of a ranking are much more important than those at the bottom

[15]. Further studies on weighted rank correlation were carried out extensively based

on these two functions [8, 23, 28, 36, 39, 41, 42]. More reasonable variants of rank

correlation functions were also proposed in the literature [14, 19, 20, 38].95

Distance metrics have been used to analyze ranking data. One of the most widely

used distance functions to measure rankings is the Kemeny distance [25]. It is defined

as the sum of pairs where the ranking preferences disagree. One can refer to [3, 31, 11]

for more information about the commonly used distance metrics.

Measuring consensus and diversity of rankings. For a ranking set with the num-

ber of rankings greater than two, work [4] is known as the first study to define a con-

sensus measure as a function mapping linear orders (i.e, rankings without ties) to a

number between 0 and 1. Kendall’s coefficient of concordance was introduced in [4] as

a measure of consensus of a ranking set. Given a set of rankings R = {r1, r2, . . . , rN}

over candidates {�1,�2, · · · ,�n}, the total positions of the candidates in all rankings

need to be calculated first, which are
NP
l=1

⇡(�i, rl), i = 1, · · · , n. Kendall’s coefficient

of concordance is defined based on the deviations of the total positions from their mean

as

W =
12

N2(n3 � n)

nX

i=1

 
NX

l=1

⇡(�i, rl)�
1

n

nX

i=1

NX

l=1

⇡(�i, rl)

!2

,

where the term 12
N2(n3�n) is for normalization.100

Garcı́a-Lapresta and Pérez-Román [16] extended the work [4] by considering weak

5
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orders (i.e., ranking with ties). A measure based on a weighted Kemeny distance was

introduced. In [2], it was discussed that one prominent approach of constructing a con-

sensus or diversity measure is to make pairwise comparisons of the rankings with a rank

correlation or distance function, such as the functions introduced in the above section,105

and then aggregate the comparison results. Thus, two key issues with this approach are

the choice of a proper pairwise comparison metric and the utilization of an aggregation

method. Kendall’s ⌧ was used to compare the similarity of each pair of rankings in

[2], and the consensus measure of a ranking set was constructed by taking the average

of the comparison results. Studies with more reasonable similarity or distance metrics110

were carried out in [1, 17, 18, 13]. Karpov [24] considered to aggregate the comparison

results with a geometric mean aggregator.

Although these studies discussed different aspects of consensus measures, they are

still inefficient in the assessment of overall consensus of a ranking set. In information

systems, it is often the case that certain preference patterns are embedded in most of115

the rankings. The existing studies based on rank correlation and distance functions did

not provide a full picture about this kind of common patterns. They cannot quantify the

degree to which preferences over candidates are shared by the majority of the rankings.

To solve this problem, this paper proposes a concept of q-support patterns to represent

the commonality in a ranking set and the consensus is quantified based on the q-support120

patterns.

3. Quantifying consensus with q-support patterns

This section first defines the q-support patterns and the consensus scores of a rank-

ing set. Then, an algorithm is presented to calculate the consensus scores by utilizing

matrices to represent the q-support patterns.125

3.1. q-support patterns

Let C = {�1,�2, · · · ,�n} be a set of n candidates to be ranked. A ranking rl =

(rl1 , rl2 , · · · , rlm) is an ordered list in which item rli 2 C is more preferred than item

rlj 2 C for i < j. Given two items �x and �y 2 C, if there exists i  j such that

6
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rli = �x and rlj = �y , we write �x�y @ rl; otherwise �x�y 6@ rl. Specially, if130

�x = �y , �x�x @ rl simply means that item �x is included in ranking rl, also written

as �x @ rl.

It is usually the case that most of the rankings obtained for a task share certain

commonality. Suppose that there is a set of rankings R = {r1 = (a, b, c, d, e, f), r2 =

(b, a, c, d, e, f), r3 = (a, b, c, e, d, f), r4 = (c, b, d, e, f, g)}. It can be seen that item135

a and the pairwise items bc are common patterns for most of the rankings, but not for

all the rankings in R (e.g., bc @ r1, bc @ r2, bc @ r3, but bc 6@ r4). These patterns,

partially included in a set of rankings, show the extent to which the rankings agree.

Therefore, it is necessary to consider these patterns to understand the consensus level

in a set of rankings. As such, we define the following q-support patterns for a ranking140

set.

Definition 1 (q-support patterns). Consider a set of N rankings R = {r1, r2, . . . , rN}

over candidate set C = {�1,�2, · · · ,�n}. For �x and �y 2 C, we have the following

subset R0(�x,�y) ✓ R

R0(�x,�y) = {rz|�x�y @ rz, rz 2 R} . (1)

Let q 2 (0, N ] be an integer. The pattern �x�y is a q-support pattern of R, denoted by

�x�y

q
@ R, if the size of R0(�x,�y) satisfies |R0(�x,�y)| � q; otherwise �x�y 6

q
@ R.

If �x = �y , �x�x

q
@ R indicates that item �x is a single q-support item of R, also

written as �x

q
@ R.145

The notation �x�y

q
@ R means that �x�y occurs in at least q rankings in R. We

use S1(q) and S2(q) to respectively denote the set of the single q-support items and the

set of the pairwise q-support patterns, i.e.,

S1(q) =
n
�x|�x

q
@ R, �x 2 C

o
(2)

S2(q) =
n
�x�y|�x�y

q
@ R, �x 6= �y,�x 2 C,�y 2 C

o
. (3)

The set S1(q) is important in the evaluation of incomplete rankings, where not all the

candidates under consideration are ranked in the rankings. It gives the items with more150

preferences among the candidates, which are ranked in at least q rankings. The set

S2(q) collects the preference orders embedded in at least q rankings.

7
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3.2. Consensus scores

The q-support patterns describe how common patterns are embedded in rankings.

This section first defines individual consensus scores for a ranking rl 2 R based on the155

q-support patterns. Then, the overall consensus scores are introduced for the ranking

set R. The relative consensus degree that a ranking rl shares with the others can be

revealed by the individual and the overall consensus scores. In Section 5, it shows that

this information can be used in the detection of an outlier from a ranking set.

The following individual consensus scores are defined for a ranking rl.160

Definition 2 (Individual consensus scores). For a ranking rl = (rl1 , rl2 , · · · , rlm) 2

R, the sets of the single q-support items and the pairwise q-support patterns are defined

as

Srl
1 (q) =

n
rli |rli

q
@R, i2{1, 2, · · · ,m}

o
(4)

Srl
2 (q) =

n
rlirlj |rlirlj

q
@R, i, j2{1, 2, · · · ,m}, i<j

o
. (5)

The individual consensus scores of rl are


rl
1 (q) =

1

N
rl
1

|Srl
1 (q)| (6)


rl
2 (q) =

1

N
rl
2

|Srl
2 (q)|, (7)

where N
rl
1 = m and N

rl
2 = m(m�1)

2 respectively represent the number of the ranked165

items and the number of the pairwise patterns of rl.

Definition 3 (Overall consensus scores). For a ranking set R with the individual con-

sensus scores defined as (6) and (7), the overall consensus scores of R are

̄1(q) =
1

N

NX

l=1


rl
1 (q) (8)

̄2(q) =
1

N

NX

l=1


rl
2 (q). (9)

The individual consensus scores measure the proportions of the preference patterns

of rl embedded in at least q rankings, where 
rl
1 (q) measures consensus in terms of170

single q-support items and 
rl
2 (q) measures consensus in terms of pairwise q-support

8
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patterns. The overall consensus scores give the average proportions and they are used

to evaluate the consensus degree of a whole ranking set. Note that a q-support pattern

depicts the commonality embedded in at lease q rankings in a ranking set. The choice

of q in the consensus evaluation depends on the specific need in the evaluation of rank-175

ing data. For example, many information systems may expect that ranked patterns are

supported by at least half of the experts, and the value of q can be set to dN2e for this

case. In addition, by studying the consensus degree based on different values of q, a

more comprehensive understanding about the ranking set can be obtained, as different

values of q reflect the extents of different partial coverage of the patterns embedded in180

rankings.

The consensus scores have the following property.

Property 1. The overall consensus scores satisfy

0  ̄1(q)  1 (10)

0  ̄2(q)  1. (11)

The score ̄1(q) = 0 if and only if arbitrary q rankings in R share no common item,

and ̄1(q) = 1 if and only if every ranked item of all the rankings is shared by at185

least q rankings. Similarly, ̄2(q) = 0 if and only if arbitrary q rankings in R share

no common pairwise pattern, and ̄2(q) = 1 if and only if every pairwise preference

pattern of all the rankings is embedded in at least q rankings.

3.3. An efficient algorithm for quantifying consensus

In this section, a matrix representation is introduced to represent the q-support pat-190

terns, as shown in Theorem 1, which implies an algorithm for calculating the consensus

scores.

Theorem 1. Consider a set of N rankings R = {r1, r2, . . . , rN} over candidates

C = {�1,�2, · · · ,�n}. For a ranking rl = (rl1 , rl2 , · · · , rlm) 2 R and 8rz =

(rz1 , rz2 , · · · , rzu) 2 R, with the position function

⇡ (rli , rz) =

8
><

>:

0, if rli 6@ rz

p, if rli = rzp

(12)

9
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and the Heaviside function

H(x) =

8
><

>:

1, if x > 0

0, otherwise,

(13)

we define

f(rli , rlj ) =

8
>><

>>:

NP
z=1

H (⇡(rli , rz)) , if i = j

NP
z=1

H
�
⇡(rlj , rz)� ⇡(rli , rz)

�
H (⇡(rli , rz)) , otherwise

(14)

and matrix Arl = (Arl [j, i]) 2 Rm⇥m
as

A
rl [j, i] =

8
><

>:

1, if i  j and f(rli , rlj ) � q

0, otherwise.

(15)

Then, we have


rl
1 (q) =

1

N
rl
1

tr (Arl) (16)


rl
2 (q) =

1

N
rl
2

�
eTArle� tr (Arl)

�
, (17)

where e = [1, 1, · · · , 1]T is an m-row vector of all ones.195

Proof. By (12), it can be known that ⇡ (rli , rz) gives the position of item rli in rz .

From the definition of f(rli , rlj ), it can be seen that f(rli , rlj ) counts the number of

rankings 8rz 2 R satisfying rlirlj @ rz . Thus, the entry A
rl [j, i] = 1 represents

rlirlj

q
@R. Moreover, note that eTArle gives the sum of the all entries in matrix Arl .

Therefore, the result of (16) and (17) can be further obtained based on Definition 2.200

The matrix Arl provides a proper representation of the q-support patterns in rl.

This representation can further facilitate the analysis of the commonality that individ-

ual rankings share with the others. Based on Theorem 1, we develop Algorithm 1 to

calculate the consensus scores and characterize the q-support patterns more efficiently.

In Algorithm 1, when a ranking rl is considered, for a pattern rlirlj embedded in205

the ranking, there is no need to judge if the pattern is a q-support pattern by check-

ing all the rankings in some cases. Suppose q = d2N3 e, which means that we consider

10
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rlirlj as a common pattern if it is contained by at least two third of the rankings.

For rl, if rlirlj is a d2N3 e-support pattern, it must be included by one of the rankings

rx 2 {r1, r2, . . . , rbN3c+1}. If rlirlj is not included by one of the first bN3c+1 rankings210

of the ranking set, rlirlj cannot be a q-support pattern and A
rl[j, i] should be zero.

Thus, we do not need to calculate A
rl [j, i] by always checking all the rankings. Line

7 in Algorithm 1 checks if rlirlj of rl is included by a ranking rx for which matrix

Arx has already been constructed. If the number of the rankings whose corresponding

matrix is not constructed is greater than q, we look for rx in the previously considered215

rankings {r1, r2, . . . , rl�1}; Otherwise if the number of rankings not yet considered is

less than q, we only need to check if there is an rx in the first N � q + 1 rankings. As

shown on Lines 8 and 9, if rlirlj has been considered in a constructed matrix for rx,

it is not necessary to recalculate the corresponding entry of the current matrix Arl and

the entry is equal to that of Arx corresponding to the pattern. Otherwise, as on Line220

10, only when the number of the rankings {rl, rl+1, . . . , rN} is no less than q, pattern

rlirlj has the possibility to be a q-support pattern and we need to check the remaining

rankings to see if the pattern is a q-support ranking. In this way, the computation cost

can be significantly reduced. From Lines 11 to 16, f(rli , rlj) accumulates the number

of rankings containing rlirlj . To further improve the computation efficiency, the sum225

of f(rli , rlj) and the number of the remaining rankings not yet considered is checked

during the accumulation process. If it is less than q, then rlirlj has no chance to be a

q-support pattern and there is no need to check if the remaining rankings contain rlirlj .

In Algorithm 1, for the case that rlirlj has no chance to be a q-support pattern, Arl [j, i]

keeps the initialized value, i.e., zero.230

The following example shows how the matrix representation can be used to evaluate

the ranking consensus.

Example 1. Consider a set of rankings R={r1=(a,b,c,d,e,f), r2=(b,c,d,e,f,a), r3=

(b,d,a,g,h,f), r4 = (b, a, c, d, f, e)} over candidates {a,b,c,d,e,f,g,h}, and let q = 3.

11
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We have

Ar1 =

0

BBBBBBBBBBBB@

a b c d e f

a 1 0 0 0 0 0

b 0 1 0 0 0 0

c 0 1 1 0 0 0

d 0 1 1 1 0 0

e 0 1 1 1 1 0

f 1 1 1 1 0 1

1

CCCCCCCCCCCCA

, Ar2 =

0

BBBBBBBBBBBB@

b c d e f a

b 1 0 0 0 0 0

c 1 1 0 0 0 0

d 1 1 1 0 0 0

e 1 1 1 1 0 0

f 1 1 1 0 1 0

a 1 0 0 0 0 1

1

CCCCCCCCCCCCA

Ar3 =

0

BBBBBBBBBBBB@

b d a g h f

b 1 0 0 0 0 0

d 1 1 0 0 0 0

a 1 0 1 0 0 0

g 0 0 0 0 0 0

h 0 0 0 0 0 0

f 1 1 1 0 0 1

1

CCCCCCCCCCCCA

, Ar4 =

0

BBBBBBBBBBBB@

b a c d f e

b 1 0 0 0 0 0

a 1 1 0 0 0 0

c 1 0 1 0 0 0

d 1 0 1 1 0 0

f 1 1 1 1 1 0

e 1 0 1 1 0 1

1

CCCCCCCCCCCCA

.

By (16) and (17), the following result can be obtained

l 1 2 3 4


rl
1 (3) 1.00 1.00 0.67 1.00


rl
2 (3) 0.67 0.67 0.33 0.73

The overall consensus scores are

̄1(3) = 0.92, ̄2(3) = 0.60.

Since A
rl [j, i] represents if rlirlj is a q-support pattern, it can be known Sr1

1 (3) =235

{a, b, c, d, e, f}, Sr1
2 (3)={af, bc, bd, be, bf, cd, ce, cf, de, df}, Sr2

1 (3)={b, c, d, e, f, a},

Sr2
2 (3)={bc, bd, be, bf, ba, cd, ce, cf, de, df}, Sr3

1 (3)={b, d, a, f}, Sr3
2 (3)={bd, ba,

bf, df, af}, Sr4
1 (3) = {b, a, c, d, f, e}, Sr4

2 (3) = {ba, bc, bd, bf, be, af, cd, cf, ce, df, de}.

Furthermore, the sets of the q-support patterns of the whole ranking set are S1(3) =

Sr1
1 (3) [ Sr2

1 (3) [ Sr3
1 (3) [ Sr4

1 (3) = {a, b, c, d, e, f}, S2(3) = Sr1
2 (3) [ Sr2

2 (3) [240

Sr3
3 (3) [ Sr4

4 (3)={af, ba, bc, bd, be, bf, cd, ce, cf, de, df}.

12
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Algorithm 1: Quantifying consensus with matrix representation
Data: A set of rankings R, the value of q

Result: rl
1 (q),rl

2 (q), l = 1, 2, · · · , N ; Srl
1 (q), Srl

2 (q); ̄1(q), ̄2(q); S1(q),S2(q)

1 Initialize Arl , l = 1, 2, · · · , N with zero matrices

2 for l = 1 to N do

3 m Length of rl

4 for i = 1 to m do

5 for j = i to m do

6 f(rli , rlj ) = 0

7 if (l>1, N�l+1 � q, 9x2 [1, l�1]) or

(l>1, N�l+1 < q, 9x2 [1, N�q+1]) such that rlirlj @ rx then

8 A
rl [j, i] = A

rx [⇡(rlj , rx),⇡(rli , rx)]

9 continue

10 else if N � l + 1 � q then

11 for z = l to N do

12 Calculate ⇡(rli ,rz),⇡(rlj , rz) by (12)

13 Calculate f(rli , rlj )+ =
8
><

>:

H(⇡(rli , rz)), if i = j

H(⇡(rlj , rz)�⇡(rli , rz))H(⇡(rli , rz)), otherwise

14 if N � z + f(rli , rlj ) < q then

15 break

16 end

17 end

18 if f(rli , rlj ) � q then

19 A
rl [j, i] = 1

20 end

21 end

22 Calculate 
rl
1 (q),rl

2 (q) by (16) and (17)

23 Get Srl
1 (q),Srl

2 (q) based on Arl

24 end

25 Calculate ̄1(q), ̄2(q) by (8) and (9)

26 Get S1(q),S2(q) by S1(q) = [
rl2R

Srl
1 (q), S2(q) = [

rl2R
Srl
2 (q)

27 return {rl
1 (q),rl

2 (q), l = 1, 2, · · · , N ; Srl
1 (q),Srl

2 (q); ̄1(q), ̄2(q); S1(q),S2(q)}

13
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4. Quantifying consensus with consideration of positions and position gaps

The rank positions of an item and the position gaps of pairwise items may be sig-

nificantly different in a ranking set. Consider the items a and f in Example 1. The

rank positions of item a are ⇡(a, r1) = 1,⇡(a, r2) = 6,⇡(a, r3) = 3,⇡(a, r4) = 2 and245

the position gaps of the two items are ⇡(f, r1)�⇡(a, r1) = 5,⇡(f, r3)�⇡(a, r3) =

3,⇡(f, r4)�⇡(a, r4)=3. These differences influence the ranking consensus. However,

the consensus scores defined in the previous section only involve the existence of q-

support patterns. To reflect the importance of these position and gap information, the

following definition presents an extension to (6) and (7) for quantifying consensus of a250

ranking set more effectively.

Definition 4 (Weighted individual consensus scores). The weighted consensus scores

of ranking rl 2 R are


rl
1 (q) =

1

N
rl
1

X

rli2S
rl
1 (q)

�
h(rli ,rl) (18)


rl
2 (q) =

1

N
rl
2

X

rlirlj2S
rl
2 (q)

�
d(rli ,rlj ,rl), (19)

where the constants 0<�1 and 0<�1 are the weights, h(rli , rl) is the deviation

of the position of rli in rl from its average position in the ranking set, and d(rli , rlj , rl)255

is the deviation of the position gaps between rli and rlj in rl from the average.

The deviations h(rli , rl) and d(rli , rlj , rl) are calculated as follows. For ranking

rl 2 R, we have the sets Srl
1 (q) and Srl

2 (q) of the q-support patterns defined as (4)

and (5), the function f(rli , rlj ) in the form of (14), and the subset R0(rli , rlj ) of R

containing pattern rlirlj as (1). The average position of item rli in the ranking set is

defined as

⇡̄(rli) =
1

f(rli , rli)

X

rz2R0(rli ,rli )

⇡(rli , rz). (20)

The deviation h(rli , rl) is

h(rli , rl) = |⇡(rli , rl)� ⇡̄(rli)|. (21)

14
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The position gap between rli and rlj in ranking rz is

!(rli , rlj , rz) = ⇡(rlj , rz)� ⇡(rli , rz). (22)

The average position gap of rli and rlj in the ranking set is defined as

!̄(rli , rlj ) =
1

f(rli , rlj )

X

rz2R0(rli ,rlj )

!(rli , rlj , rz). (23)

The deviation d(rli , rlj , rl) is

d(rli , rlj , rl) = |!(rli , rlj , rl)� !̄(rli , rlj )|.

From the definition, it can be known that smaller values of � and � reflect greater im-

pacts of the deviations of item positions and position gaps in rankings on the consensus

scores. It is worth noting that the consensus scores defined in the previous section are

a special case of the weighted consensus scores with � = 1,� = 1. Here, we do not260

need to make any change to the overall consensus scores defined in Definition 3.

To calculate the weighted consensus scores with the matrix representation, equation

(15) in Theorem 1 is changed to

A
rl [j, i]=

8
>>>><

>>>>:

�
h(rli ,rl), if i = j and f(rli , rlj )�q

�
d(rli ,rlj ,rl), if i < j and f(rli , rlj )�q

0, otherwise.

(24)

Small changes will be needed in Algorithm 1. We follow the steps of Algorithm 1 and

change the way to calculate A
rl [j, i] on Line 8 to the following form

A
rl [j, i] =

8
><

>:

H
�
A

rx [⇡(rlj , rx),⇡(rli , rx)]
�
�
h(rli ,rl), if i = j

H
�
A

rx [⇡(rlj , rx),⇡(rli , rx)]
�
�
d(rli ,rlj ,rl), if i < j.

Line 19 is replaced by

A
rl [j, i]=

8
><

>:

�
h(rli ,rl), if i = j

�
d(rli ,rlj ,rl), if i < j,

and meanwhile the average position ⇡̄(rli) and the average position gap !̄(rli , rlj ) are

recorded in here for further use on Line 8.

15
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Remark 1 (Rankings with ties). Rankings with ties are used in the case that the pref-

erences over some items are identical. Let rz = (Tz1 , Tz2 , · · · , Tzn) be a ranking with

ties, where Tzi , i 2 [1, n] is a set of items with identical preference. For i < j, every

item in Tzi is more preferred than all the items in Tzj . The proposed approach can

be extended to rankings with ties by making a small change to the position function.

Specifically, we can replace (12) with

⇡ (rli , rz) =

8
><

>:

p, if rli 2 Tzp

0, otherwise

to make the approach applicable to evaluate consensus of rankings with ties.

5. Detecting outliers265

The individual consensus scores 
rl
1 (q) and 

rl
2 (q) directly reflect the (weighted)

numbers of q-support patterns that rl shares with the other rankings in R. For instance,

ranking r3 in Example 1 shares less 3-support patterns with the others, thus it has

much lower consensus scores. This can be used to detect outlier rankings, which have

low consensus with most rankings. The following outlier detection method is naturally270

developed from the consensus quantifying approach.

Consider a ranking set R with overall consensus scores ̄1(q) and ̄2(q) for a given

q. Define the relative deviations of the individual consensus scores of ranking rl 2 R

from the overall consensus scores as

v
rl
1 (q) =


rl
1 (q)� ̄1(q)

̄1(q)
(25)

v
rl
2 (q) =


rl
2 (q)� ̄2(q)

̄2(q)
. (26)

Note that vrl1 (q) < 0 and v
rl
2 (q) < 0 imply that the ranking rl has lower consensus275

scores than the overall averages. For given constants ✏1>0 and ✏2>0, if vrl1 (q)<�✏1

or vr21 (q) < �✏2, we regards rl as an outlier of the ranking set. The values of ✏1, ✏2

depend on the specific need for a system.

This outlier detection method can be used to figure out irrelevant rankings in the

ranking set and consequently identify the majority of rankings with higher consensus.280

16
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It is of great importance in many scenarios, e.g., design of auto-suggestion queries in

search engine. It is worth noting that one potential application of the obtained detection

method is to improve rank aggregation. Rank aggregation is the task of aggregating

the preferences of different agents to generate a final ranking. The outliers of rank-

ings/agents play a negative role in drawing a consensus ranking. Even though many285

existing studies have been carried out on rank aggregation [40, 9, 5], there is still room

to improve aggregated rankings so that the aggregated result is as close to the ground

truth as possible. This will be studied in a separate paper.

6. Experimental studies

This section shows how the proposed approach can be used to evaluate consen-290

sus for a set of rankings. The source code is available at https://github.com/

zhiweiuu/secs.

6.1. Analysis of the Mechanical Turk Dots datasets

The Mechanical Turk Dots datasets [30] include four publicly available datasets

obtained for four dots tasks. These datasets each contain rankings obtained by 794295

to 800 voters over four candidates. Each candidate corresponds to a certain number

of random dots. The voters were asked to rank the candidates from those with the

least dots to the most. Each task contains candidates with 200, 200+i, 200+2i, and

200 +3i dots, where i = 3, 5, 7, 9 respectively for the four tasks. Figure 1 shows the

proportions of rankings in each dataset with different Spearman’s ⇢ to the ground truth300

ranking. The values of different Spearman’s ⇢ are distinguished by colors. It can be seen

that the proportions of rankings with high Spearman coefficients 0.8 and 1.0 increase

from Dataset 1 to Dataset 4, while that with coefficient 0.4 decreases significantly. The

ranking consensus degrees seem increasing from Dataset 1 to Dataset 4. We apply the

proposed approach to accurately compare these datasets.305

The overall consensus scores without weighting are first considered. Since the

datasets have complete rankings, i.e., all the candidates under consideration are ranked

in the rankings, the consensus scores of the single items satisfy ̄1(q)=4 for all q and

17
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Figure 1: Spearman’s ⇢ between the rankings and the ground truth ranking

all the datasets. Figure 2 gives the overall consensus scores ̄2(q) with respect to q
N ,

where q
N � 0.5 indicates that the commonality embedded in half or more than half of310

the rankings is evaluated. The trend of the overall consensus scores for the four datasets

is clear. Dataset 4 has the largest overall consensus score, which indicates that Dataset

4 has the most q-support common patterns. Specifically, it can be seen from the figure

that, when q
N is 0.5, the consensus score ̄2(q) is 0.59, 0.62, 0.68, and 0.71 respec-

tively for Dataset 1, 2, 3 and 4. This means that on average, 59.00%, 62.00%, 68.00%,315

and 71.00% of the pairwise patterns of a ranking are dN
2 e-support patterns in Dataset

1, 2, 3 and 4, respectively. As the value of q increases, the consensus scores decrease.

When q
N reaches 0.67, the consensus score is zero for Dataset 1, which means that

arbitrary q � 0.67N rankings in the dataset have no common pattern. On the other

hand, the consensus scores are 0.12, 0.37, 0.38 for Dataset 2, 3, 4. In other words, on320

average, 12.00%, 37.00%, 38.00% of the patterns of a ranking are supported by at least

d0.67Ne rankings in the corresponding dataset.

The overall consensus scores with weightings are then evaluated. Figure 3 shows

the consensus scores with respect to the weights � and � for a fixed q=dN
2 e. As shown,

̄1(dN
2 e) and ̄2(dN

2 e) decrease with the increase of weightings on the deviations of325

positions and position gaps. Dataset 1 has the lowest overall consensus scores and

18
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Figure 2: Consensus scores ̄2(q) of Dots datasets without weighting

Dataset 4 has the highest. The ratios of the consensus scores between Dataset 4 and

Dataset 3, Dataset 3 and Dataset 2, and Dataset 2 and Dataset 1 are shown in Table

1 for the cases without weighting and with weighting parameters � = 0.5,� = 0.5.

By comparing the two cases, it can be found that the ratios with weightings on the330

deviations of the position and position gaps are higher than those without weightings.

This reveals that the differences of the positions of the single q-support items and the

position gaps of the q-support patterns decrease from Dataset 1 to Dataset 4.

Table 1: Ratios of the consensus scores between datasets

Dataset 4/Dataset 3 Dataset 3/Dataset 2 Dataset 2/Dataset 1

̄1(dN
2 e), � = 1 1.00 1.00 1.00

̄1(dN
2 e), � = 0.5 1.02 1.04 1.04

̄2(dN
2 e),� = 1 1.04 1.09 1.05

̄2(dN
2 e),� = 0.5 1.05 1.11 1.07

The relative deviations of 
rl
2 (dN

2 e) from the overall consensus score ̄2(dN
2 e)

is also studied to verify the effectiveness of the proposed outlier detection method.335

By choosing � = 0.5, the result in Table 2 can be obtained. The deviations are very

high for r21, r24, r22, r13 of Dataset 1, r20, r22, r19, r17 of Dataset 2, r19, r20, r22, r15

of Dataset 3, and r21, r22, r24, r20 of Dataset 4. These rankings are regarded as out-
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(a) ̄1(dN
2 e) with respect to �

(b) ̄2(dN
2 e) with respect to �

Figure 3: Weighted consensus scores of Dots datasets

liers of the datasets. They are (4, 3, 2, 1), (4, 3, 1, 2), (4, 2, 3, 1), (3, 4, 2, 1) respec-

tively in each dataset. Note that Spearman’s ⇢ between (4, 3, 2, 1) and the ground truth340

(1, 2, 3, 4) are �1, and all the Spearman coefficients of the rest three to the ground truth

are �0.8. After deleting these outlier rankings, the consensus scores ̄1(dN
2 e) with

� = 0.5 increase from 0.55, 0.57, 0.59, 0.60 to 0.58, 0.59, 0.61, 0.62 for Dataset 1, 2,

3, 4, respectively. The consensus scores ̄2(dN
2 e) change from 0.38, 0.41, 0.45, 0.47

to 0.42, 0.44, 0.48, 0.49 for the four datasets. This confirms the effectiveness of the345

proposed outlier detection method.

It is further found that the four datasets have the same set of the dN
2 e-support pat-
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Table 2: Deviations of the consensus scores

q = dN
2 e Dataset 1 Dataset 2 Dataset 3 Dataset 4

v
r1
2 (q) 0.72 0.68 0.56 0.55

v
r2
2 (q) 0.14 0.38 0.29 0.20

v
r3
2 (q) 0.44 0.29 0.28 0.18

v
r4
2 (q) 0.44 0.36 0.15 0.08

v
r5
2 (q) 0.09 0.08 -0.03 -0.09

v
r6
2 (q) 0.06 0.06 -0.03 -0.21

v
r7
2 (q) 0.47 -0.01 -0.15 -0.10

v
r8
2 (q) 0.11 -0.27 -0.04 -0.11

v
r9
2 (q) 0.02 -0.04 -0.35 -0.41

v
r10
2 (q) -0.22 0.02 -0.37 -0.21

v
r11
2 (q) -0.29 -0.28 -0.17 -0.20

v
r12
2 (q) -0.38 -0.11 -0.42 -0.41

v
r13
2 (q) -0.71 -0.13 -0.20 -0.56

v
r14
2 (q) -0.25 -0.15 -0.49 -0.35

v
r15
2 (q) -0.06 -0.46 -0.74 -0.21

v
r16
2 (q) -0.09 -0.45 -0.20 -0.54

v
r17
2 (q) -0.36 -0.72 -0.28 -0.49

v
r18
2 (q) -0.39 -0.37 -0.50 -0.47

v
r19
2 (q) -0.40 -0.74 -1.00 -0.55

v
r20
2 (q) -0.46 -1.00 -0.75 -0.74

v
r21
2 (q) -1.00 -0.44 -0.50 -1.00

v
r22
2 (q) -0.73 -0.75 -0.77 -0.75

v
r23
2 (q) -0.12 -0.45 -0.52 -0.54

v
r24
2 (q) -0.74 -0.47 -0.52 -0.77
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terns S2(dN
2 e) = {12, 13, 14, 23, 24, 34}. By aggregating these dN

2 e-support patterns,

we can obtain the ranking (1, 2, 3, 4), i.e., the ground truth ranking. This enhances

the advantage of the proposed consensus quantifying approach over the rank correla-350

tion and distance functions approaches, where no common patterns of the rankings are

specified.

6.2. Evaluation of the information retrieval results of the 2015 CLEFeHealth Lab Task

2

This experiment focuses on top-k rankings using the dataset of the CLEF 2015355

eHealth Evaluation Lab Task 2 [32], instead of the complete rankings as in the previ-

ous section. The CLEF 2015 eHealth Evaluation Lab Task 2 aimed to foster the design

of web search engines in providing access to medical information especially for self-

diagnosis information, since commercial search engines were far from being effective

in the field. The problem considered in the task was to retrieve web pages for queries360

related to different medical conditions. The queries were pre-generated by showing im-

ages and videos of medical conditions to potential users. There were 67 queries selected

to be used in the task for 23 medical conditions, among which 22 conditions had three

queries and one condition had one query. The queries were first created in English and

then translated into several other languages. The document collection made available365

to the participates for information retrieval contains approximately one million web

pages on a broad range of health topics. The participates were asked to submit up to

ten runs for the English queries. The first run of each team was with the highest priority

for selection of documents to contribute to the final assessment. Twelve participating

teams submitted their English information retrieval results.370

This section evaluates the information retrieval results of the first English runs.

Given that the first two pages of a user’s search result probably draw the most atten-

tion in practice, the top-20 retrieved documents for each query are considered in the

evaluation. The conventional Spearman’s ⇢ and Kendall’s ⌧ measure the correlation

of two complete rankings, as they compare the positions of same items in two rank-375

ings. For this dataset with incomplete rankings, the Spearman’s ⇢ and Kendall’s ⌧ for

top-k rankings proposed in [15] are employed to measure the correlations for the 67
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queries. Because a typo exists in the 62nd query, there is no record of some teams

for this query in the dataset. This query is not considered in the following analysis.

Since there is no ground truth ranking available, we pairwisely compare the ranking380

obtained by each team for a specific query with the rankings of the other teams and

take the average as the comparison result of the team. The obtained comparison results

of all the teams for the query are further aggregated by taking their average, and the

aggregated result measures the correlations of rankings obtained by all the teams for

the query. Figure 4 gives the results of Kendall’s ⌧ . Note that a key parameter p is in-385

troduced in the calculation of Kendall’s ⌧ for top-k rankings in [15]. This parameter

corresponds to the penalty for the case that two items �i and �j appear in one ranking

rl and none of them are considered in the other compared ranking rz . In this case, the

term sgn(⇡(�i, rl)� ⇡(�j , rl))sgn(⇡(�i, rz)� ⇡(�j , rz)) is set to be p. We normalize

Kendall’s ⌧ to the domain of [�1, 1]. The parameter p = 1 gives an optimistic ap-390

proach. It implies that �i and �j in rz are regarded as in the same order as in rl when

there is no enough information about them. When p = 0, it gives a neutral approach.

It can be found in Figure 4(a) and Figure 4(b) that Kendall’s coefficients are highly

depends on the value of p. The result of Spearman’s ⇢ is shown in Figure 5. If an item

�i in one top-k ranking rl does not appear in the other compared top-k ranking rz , then395

the position ⇡(�i, rz) is set to `. In Figure 5, ` is chosen to be k+1. Spearman’s ⇢ also

depends on the value of `.

Unlike the Spearman’s ⇢ and Kendall’s ⌧ for top-k rankings, where assumptions

about unknown factors are made without sufficient information and may consequently

lead to bias in the measurement results, the proposed approach has no such problem and400

the consensus of a ranking set is measured more intuitively based on q-support patterns.

It provides a clear understanding about the commonality emmbedded in the rankings

obtained with different information retrieval approaches, and it can help to find hard

topics in the information retrieval task. Figure 6 shows the 6-support (i.e., N
2 -support)

consensus scores without weightings for the ranking sets of the 66 queries obtained405

by the 12 teams. The relative values of the consensus scores are generally consistent

with the results in Figures 4 and 5. However, our results based on q-support patterns,

especially the pairwise patterns, reveal more obvious and detailed information. It can
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(a) Optimistic approach

(b) Neutral approach

Figure 4: Average Kendall’s ⌧ for the ranking sets of the 66 queries obtained by the 12 teams

be seen from Figure 6(a) that the consensus score ̄1(6) is greater than 0.5 for queries

10, 13, 15, 20, 24, 25, 31, 38, 57, 58, 59, 67. This means that, on average, more than410

50% of the ranked items in a ranking for these queries are emmbedded in at least half

of the ranking set. When the orders of these ranked items are further considered, Figure

6(b) shows that, on average, more than 15% of the pairwise patterns of a ranking are

supported by at least half of the rankings for queries 20, 24, 25, 38, 57, 58, 59, 67.

Figure 7 shows the 6-support consensus scores with the weighting parameters on the415

deviations of positions and position gaps being � = 0.9,� = 0.9. It can be noticed
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Figure 5: Average Spearman’s ⇢ for the ranking sets of the 66 queries obtained by the 12 teams

that queries 58, 25, 24, 55 have higher consensus scores ̄2(6), which indicates that the

rankings of these queries share more weighted pairwise q-support patterns. Moreover,

the consensus scores ̄1(6) for these queries are also high. In contrast, the consensus

scores of queries 64, 48, 11, 33 are much lower. The detailed information of these420

queries is given in Table 3 and Table 4. By comparing the two tables, it can be found

that the queries with clear descriptions or for typical symptoms tend to have higher

consensus scores, while vague descriptions or uncommon symptoms lead to retrieval

results with lower consensus scores.

Table 3: Queries with higher consensus scores

Query ID Query ̄1(6) ̄2(6)

58 39 degree and chicken pox 0.47 0.27

25 red rash baby face 0.45 0.17

24 yellow gunk coming from one eye itchy 0.42 0.15

55 crate type mark in skin 0.40 0.15

The consensus of the information retrieval results for each topic is also evaluated425

with the proposed approach. The queries for each topic are supposed to link to an

identical medical condition. The consensus based on 2-support patterns is studied for

the 22 topics each with three queries. Topic 13 is not considered, since it associates with
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(a) Consensus score ̄1(6)

(b) Consensus score ̄2(6)

Figure 6: Consensus scores without weighting for the ranking sets of the 66 queries obtained by the 12 teams

query 62 having incomplete record in the dataset. We take the average of the consensus

scores of the ranking sets of the 12 teams. The results are given in Figure 8. Specially,430

the rankings of topics 15 and 11 have the highest average consensus scores, and the

average consensus scores for topic 21 and topic 18 are the lowest. By comparing the

topics and the details of the related queries in Table 5 and Table 6, it can be found that

the diseases of topics 15 and 11 are more common diseases to be easily self-diagnosed

and the generated queries share more commonality. On the contrary, the topics with435

low consensus scores have more diverse queries, thus they can be regarded as hard
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(a) Consensus score ̄1(6)

(b) Consensus score ̄2(6)

Figure 7: Weighted consensus scores for the ranking sets of the 66 queries obtained by the 12 teams

topics, which can be used in further tasks for the development of more advanced search

engines.
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Table 4: Queries with lower consensus scores

Query ID Query ̄1(6) ̄2(6)

64 involuntary rapid left-right eye motion 0.03 0.00

48 cannot stop moving my eyes medical condition 0.04 0.00

11 white patchiness in mouth 0.09 0.00

33 white infection in pharynx 0.11 0.01

Table 5: Topics with higher average consensus scores

Topic Query ̄1(2) ̄2(2)

15: whooping cough 12: baby has dry cough and has 0.44 0.37

(pertussis) problem to swallow saliva

46: baby cough

66: treatment of coughs in babies

11: bronchiolitis 31: toddler having squeaky breath 0.32 0.17

(caused by rsv) 49: baby always breathing with mouth closed

59: heavy and squeaky breath

Table 6: Topics with lower average consensus scores

Topic Query ̄1(2) ̄2(2)

21: nystagmus 36: eye are shaking 0.01 0.00

48: cannot stop moving my eyes medical condition

64: involuntary rapid left-right eye motion

18: asthma 6: child make hissing sound when breathing 0.01 0.00

wheezing 15: asthma attack

30: weird sounds when breathing

28



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(a) Team average of the consensus score ̄1(2)

(b) Team average of the consensus score ̄2(2)

Figure 8: Average weighted consensus scores for the 22 topics of the 3 queries
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7. Conclusion

This paper presents a novel approach to quantifying the consensus degree of a rank-440

ing set. A new concept of q-support has been introduced to represent the common pat-

terns embedded in rankings. A matrix representation has been developed to describe

the commonality within a ranking set that is shared by an individual ranking, on the

basis of which an algorithm has been developed to quantify the consensus efficiently.

Moreover, a scheme for detecting outliers in a ranking set is derived from the consen-445

sus quantifying approach. Consensus evaluation with weighting on item positions and

position gaps has also been considered. Compared with the existing methods based

on correlation and distance functions, our approach can characterize and quantify the

group preferences more explicitly and it also lays the foundation for the effective de-

tection of outliers and the development of rank aggregation algorithm, which have been450

illustrated in the experimental studies.
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