349 research outputs found

    Representation of Spatial and Feature Information in the Monkey Dorsal and Ventral Prefrontal Cortex

    Get PDF
    The primate prefrontal cortex (PFC) is critical for executive functions including working memory, task switching and response selection. The functional organization of this area has been a matter of debate over a period of decades. Early models proposed segregation of spatial and object information represented in working memory in the dorsal and ventral PFC, respectively. Other models emphasized the integrative ability of the entire PFC depending on task demands, not necessarily tied to working memory. An anterior-posterior hierarchy of specialization has also been speculated, in which progressively more abstract information is represented more anteriorly. Here we revisit this debate, updating these arguments in light of recent evidence in non-human primate neurophysiology studies. We show that spatial selectivity is predominantly represented in the posterior aspect of the dorsal PFC, regardless of training history and task performed. Objects of different features excite both dorsal and ventral prefrontal neurons, however neurons highly specialized for feature information are located predominantly in the posterior aspect of the ventral PFC. In accordance with neuronal selectivity, spatial working memory is primarily impaired by inactivation or lesion of the dorsal PFC and object working memory by ventral inactivation or lesion. Neuronal responses are plastic depending on task training but training too has dissociable effects on ventral and dorsal PFC, with the latter appearing to be more plastic. Despite the absence of an overall topography, evidence exists for the orderly localization of stimulus information at a sub-millimeter scale, within the dimensions of a cortical column. Unresolved questions remain, regarding the existence or not of a functional map at the areal and columnar scale, and the link between behavior and neuronal activity for different prefrontal subdivisions

    Comparison of Neural Activity Related to Working Memory in Primate Dorsolateral Prefrontal and Posterior Parietal Cortex

    Get PDF
    Neurons in a distributed network of cortical and subcortical areas continue to discharge after the presentation and disappearance of stimuli, providing a neural correlate for working memory. While it is thought that the prefrontal cortex plays a central role in this network, the relative contributions of other brain areas are not as well understood. In order to compare the contributions of the dorsolateral prefrontal and posterior parietal cortex, we recorded neurophysiological activity in monkeys trained to perform two different visuo-spatial working memory tasks: a Match/Nonmatch task, and a Spatial Delayed-Match-to-Sample Task. Neurons in both areas exhibited discharges in the delay periods of the tasks that could be classified in two forms. Sustained discharges persisted after the presentation of a stimulus in the receptive field with a constant or declining rate. Anticipatory responses increased in rate during the delay period, often appearing after presentation of a stimulus out of the receptive field. Despite similarities, we uncovered distinct differences between patterns of delay period in each brain area. Only in the prefrontal cortex sustained responses related to the original stimulus survived presentation of a second stimulus, in the context of the Match/Nonmatch task. Our results provide insights on the nature of processing in two areas active during working memory, and on the unique role of the prefrontal cortex in memory maintenance

    Detection of a superconducting phase in a two-atom layer of hexagonal Ga film grown on semiconducting GaN(0001)

    Get PDF
    The recent observation of superconducting state at atomic scale has motivated the pursuit of exotic condensed phases in two-dimensional (2D) systems. Here we report on a superconducting phase in two-monolayer crystalline Ga films epitaxially grown on wide band-gap semiconductor GaN(0001). This phase exhibits a hexagonal structure and only 0.552 nm in thickness, nevertheless, brings about a superconducting transition temperature Tc as high as 5.4 K, confirmed by in situ scanning tunneling spectroscopy, and ex situ electrical magneto-transport and magnetization measurements. The anisotropy of critical magnetic field and Berezinski-Kosterlitz-Thouless-like transition are observed, typical for the 2D superconductivity. Our results demonstrate a novel platform for exploring atomic-scale 2D superconductor, with great potential for understanding of the interface superconductivity

    Mechanism of absolute asymmetric synthesis and solid-state CD spectroscopy of BPOB

    Get PDF
    1,3-bis(3-phenyl-3-oxopropanoyl)benzene (BPOB) was prepared by Claisen condensation of acetophenone and dimethyl isophthalate and characterized by elemental analysis, MS, H-1 NMR, UV absorption spectrum, solid-state circular dichroism (CD) spectra, and X-ray single-crystal diffraction. The X-ray crystallographic data indicated that BPOB crystallized in a Sohncke group P2(1)2(1)2(1), UV and H-1 NMR showed that the enol tautomer was the most dominant form in solution, and the solid-state CID spectra and repeated recrytallization revealed that the formation of chiral BPOB crystals could be regarded as cry stallization-induced asymmetric synthesis

    The Litsea genome and the evolution of the laurel family

    Get PDF
    The laurel family within the Magnoliids has attracted attentions owing to its scents, variable inflorescences, and controversial phylogenetic position. Here, we present a chromosome-level assembly of the Litsea cubeba genome, together with low-coverage genomic and transcriptomic data for many other Lauraceae. Phylogenomic analyses show phylogenetic discordance at the position of Magnoliids, suggesting incomplete lineage sorting during the divergence of monocots, eudicots, and Magnoliids. An ancient whole-genome duplication (WGD) event occurred just before the divergence of Laurales and Magnoliales; subsequently, independent WGDs occurred almost simultaneously in the three Lauralean lineages. The phylogenetic relationships within Lauraceae correspond to the divergence of inflorescences, as evidenced by the phylogeny of FUWA, a conserved gene involved in determining panicle architecture in Lauraceae. Monoterpene synthases responsible for production of specific volatile compounds in Lauraceae are functionally verified. Our work sheds light on the evolution of the Lauraceae, the genetic basis for floral evolution and specific scents
    corecore