1,507 research outputs found

    Manifold Graph Signal Restoration using Gradient Graph Laplacian Regularizer

    Full text link
    In the graph signal processing (GSP) literature, graph Laplacian regularizer (GLR) was used for signal restoration to promote piecewise smooth / constant reconstruction with respect to an underlying graph. However, for signals slowly varying across graph kernels, GLR suffers from an undesirable "staircase" effect. In this paper, focusing on manifold graphs -- collections of uniform discrete samples on low-dimensional continuous manifolds -- we generalize GLR to gradient graph Laplacian regularizer (GGLR) that promotes planar / piecewise planar (PWP) signal reconstruction. Specifically, for a graph endowed with sampling coordinates (e.g., 2D images, 3D point clouds), we first define a gradient operator, using which we construct a gradient graph for nodes' gradients in sampling manifold space. This maps to a gradient-induced nodal graph (GNG) and a positive semi-definite (PSD) Laplacian matrix with planar signals as the 0 frequencies. For manifold graphs without explicit sampling coordinates, we propose a graph embedding method to obtain node coordinates via fast eigenvector computation. We derive the means-square-error minimizing weight parameter for GGLR efficiently, trading off bias and variance of the signal estimate. Experimental results show that GGLR outperformed previous graph signal priors like GLR and graph total variation (GTV) in a range of graph signal restoration tasks

    Improvement of classroom teaching of electromagnetics by means of an electronic book

    Get PDF
    Author name used in this publication: X. D. XuePower Electronics Research Centre, Department of Electrical Engineering2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Investigation of the effects of the control parameters and outputs on power factor of switched reluctance motor drive systems

    Get PDF
    Author name used in this publication: X. D. XueAuthor name used in this publication: K. W. E. ChengAuthor name used in this publication: S. L. HoAuthor name used in this publication: N. C. CheungRefereed conference paper2001-2002 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Is China-US cooperation on climate change issues mutually beneficial?

    Get PDF
    published_or_final_versionInternational and Public AffairsMasterMaster of International and Public Affair

    Study of motoring operation of in-wheel switched reluctance motor drives for electric vehicles

    Get PDF
    Author name used in this publication: X. D. XueAuthor name used in this publication: K. W. E. ChengAuthor name used in this publication: N. C. CheungAuthor name used in this publication: Z. ZhangAuthor name used in this publication: J. K. LinRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    The decay rate of ψ(2S)\psi(2S) to Λc+Σ+ˉ\Lambda_c+\bar{\Sigma^+} in SM and beyond

    Full text link
    With rapid growth of the database of the BES III and the proposed super flavor factory, measurement on the rare ψ(2S)\psi(2S) decays may be feasible, especially the weak decays into baryon final states. In this work we study the decay rate of ψ(2S)\psi(2S) to Λc+Σ+\Lambda_c+\overline{\Sigma^+} in the SM and physics beyond the SM (here we use the unparticle model as an example). The QPC model is employed to describe the creation of a pair of qqˉq\bar q from vacuum. We find that the rate of ψ(2S)Λc+Σ+\psi(2S)\rightarrow \Lambda_c+\overline{\Sigma^+} is at order of 101010^{-10} in the SM, whereas the contribution of the unparticle is too small to be substantial. Therefore if a large branching ratio is observed, it must be due to new physics beyond SM, but by no means the unparticle.Comment: 9 pages, 1 figure

    Bidirectionally Deformable Motion Modulation For Video-based Human Pose Transfer

    Full text link
    Video-based human pose transfer is a video-to-video generation task that animates a plain source human image based on a series of target human poses. Considering the difficulties in transferring highly structural patterns on the garments and discontinuous poses, existing methods often generate unsatisfactory results such as distorted textures and flickering artifacts. To address these issues, we propose a novel Deformable Motion Modulation (DMM) that utilizes geometric kernel offset with adaptive weight modulation to simultaneously perform feature alignment and style transfer. Different from normal style modulation used in style transfer, the proposed modulation mechanism adaptively reconstructs smoothed frames from style codes according to the object shape through an irregular receptive field of view. To enhance the spatio-temporal consistency, we leverage bidirectional propagation to extract the hidden motion information from a warped image sequence generated by noisy poses. The proposed feature propagation significantly enhances the motion prediction ability by forward and backward propagation. Both quantitative and qualitative experimental results demonstrate superiority over the state-of-the-arts in terms of image fidelity and visual continuity. The source code is publicly available at github.com/rocketappslab/bdmm.Comment: ICCV 202

    Phospholemman: a novel cardiac stress protein.

    Get PDF
    Phospholemman (PLM), a member of the FXYD family of regulators of ion transport, is a major sarcolemmal substrate for protein kinases A and C in cardiac and skeletal muscle. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. Functionally, when phosphorylated at serine(68), PLM stimulates Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger in cardiac myocytes. In heterologous expression systems, PLM modulates the gating of cardiac L-type Ca(2+) channel. Therefore, PLM occupies a key modulatory role in intracellular Na(+) and Ca(2+) homeostasis and is intimately involved in regulation of excitation-contraction (EC) coupling. Genetic ablation of PLM results in a slight increase in baseline cardiac contractility and prolongation of action potential duration. When hearts are subjected to catecholamine stress, PLM minimizes the risks of arrhythmogenesis by reducing Na(+) overload and simultaneously preserves inotropy by inhibiting Na(+)/Ca(2+) exchanger. In heart failure, both expression and phosphorylation state of PLM are altered and may partly account for abnormalities in EC coupling. The unique role of PLM in regulation of Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and potentially L-type Ca(2+) channel in the heart, together with the changes in its expression and phosphorylation in heart failure, make PLM a rational and novel target for development of drugs in our armamentarium against heart failure. Clin Trans Sci 2010; Volume 3: 189-196
    corecore