119 research outputs found

    Assessing reliability of protein-protein interactions by integrative analysis of data in model organisms

    Get PDF
    Background: Protein-protein interactions play vital roles in nearly all cellular processes and are involved in the construction of biological pathways such as metabolic and signal transduction pathways. Although large-scale experiments have enabled the discovery of thousands of previously unknown linkages among proteins in many organisms, the high-throughput interaction data is often associated with high error rates. Since protein interaction networks have been utilized in numerous biological inferences, the inclusive experimental errors inevitably affect the quality of such prediction. Thus, it is essential to assess the quality of the protein interaction data. Results: In this paper, a novel Bayesian network-based integrative framework is proposed to assess the reliability of protein-protein interactions. We develop a cross-species in silico model that assigns likelihood scores to individual protein pairs based on the information entirely extracted from model organisms. Our proposed approach integrates multiple microarray datasets and novel features derived from gene ontology. Furthermore, the confidence scores for cross-species protein mappings are explicitly incorporated into our model. Applying our model to predict protein interactions in the human genome, we are able to achieve 80% in sensitivity and 70% in specificity. Finally, we assess the overall quality of the experimentally determined yeast protein-protein interaction dataset. We observe that the more high-throughput experiments confirming an interaction, the higher the likelihood score, which confirms the effectiveness of our approach. Conclusion: This study demonstrates that model organisms certainly provide important information for protein-protein interaction inference and assessment. The proposed method is able to assess not only the overall quality of an interaction dataset, but also the quality of individual protein-protein interactions. We expect the method to continually improve as more high quality interaction data from more model organisms becomes available and is readily scalable to a genome-wide application

    Inference of nonlinear causal effects with GWAS summary data

    Full text link
    Large-scale genome-wide association studies (GWAS) have offered an exciting opportunity to discover putative causal genes or risk factors associated with diseases by using SNPs as instrumental variables (IVs). However, conventional approaches assume linear causal relations partly for simplicity and partly for the only availability of GWAS summary data. In this work, we propose a novel model {for transcriptome-wide association studies (TWAS)} to incorporate nonlinear relationships across IVs, an exposure, and an outcome, which is robust against violations of the valid IV assumptions and permits the use of GWAS summary data. We decouple the estimation of a marginal causal effect and a nonlinear transformation, where the former is estimated via sliced inverse regression and a sparse instrumental variable regression, and the latter is estimated by a ratio-adjusted inverse regression. On this ground, we propose an inferential procedure. An application of the proposed method to the ADNI gene expression data and the IGAP GWAS summary data identifies 18 causal genes associated with Alzheimer's disease, including APOE and TOMM40, in addition to 7 other genes missed by two-stage least squares considering only linear relationships. Our findings suggest that nonlinear modeling is required to unleash the power of IV regression for identifying potentially nonlinear gene-trait associations. Accompanying this paper is our Python library nl-causal(https://github.com/nl-causal/nonlinear-causal) that implements the proposed method.Comment: 36 pages, 8 figure

    Assessing reliability of protein-protein interactions by integrative analysis of data in model organisms

    Get PDF
    BACKGROUND: Protein-protein interactions play vital roles in nearly all cellular processes and are involved in the construction of biological pathways such as metabolic and signal transduction pathways. Although large-scale experiments have enabled the discovery of thousands of previously unknown linkages among proteins in many organisms, the high-throughput interaction data is often associated with high error rates. Since protein interaction networks have been utilized in numerous biological inferences, the inclusive experimental errors inevitably affect the quality of such prediction. Thus, it is essential to assess the quality of the protein interaction data. RESULTS: In this paper, a novel Bayesian network-based integrative framework is proposed to assess the reliability of protein-protein interactions. We develop a cross-species in silico model that assigns likelihood scores to individual protein pairs based on the information entirely extracted from model organisms. Our proposed approach integrates multiple microarray datasets and novel features derived from gene ontology. Furthermore, the confidence scores for cross-species protein mappings are explicitly incorporated into our model. Applying our model to predict protein interactions in the human genome, we are able to achieve 80% in sensitivity and 70% in specificity. Finally, we assess the overall quality of the experimentally determined yeast protein-protein interaction dataset. We observe that the more high-throughput experiments confirming an interaction, the higher the likelihood score, which confirms the effectiveness of our approach. CONCLUSION: This study demonstrates that model organisms certainly provide important information for protein-protein interaction inference and assessment. The proposed method is able to assess not only the overall quality of an interaction dataset, but also the quality of individual protein-protein interactions. We expect the method to continually improve as more high quality interaction data from more model organisms becomes available and is readily scalable to a genome-wide application

    Association of obstructive sleep apnea with hypertension: A systematic review and meta-analysis

    Get PDF
    Results: Twenty-six studies with 51 623 participants (28 314 men, 23 309 women; mean age 51.8 years) met inclusion criteria and were included in this study. Among them, six studies showed a significant association between OSA and resistant hypertension (pooled OR = 2.842, 95% CI = 1.703-3.980, P \u3c 0.05). Meanwhile, the combination of 20 original studies on the association of OSA with essential hypertension also presented significant results with the pooled ORs of 1.184 (95% CI = 1.093-1.274, P \u3c 0.05) for mild OSA, 1.316 (95% CI = 1.197-1.433, P \u3c 0.05) for moderate OSA and 1.561 (95% CI = 1.287-1.835, P \u3c 0.05) for severe OSA. Conclusions: Our findings indicated that OSA is related to an increased risk of resistant hypertension. Mild, moderate and severe OSA are associated essential hypertension, as well a dose-response manner relationship is manifested. The associations are relatively stronger among Caucasians and male OSA patients. Background: Obstructive sleep apnea (OSA) is a sleep disorder characterized as complete or partial upper airflow cessation during sleep. Although it has been widely accepted that OSA is a risk factor for the development of hypertension, the studies focusing on this topic revealed inconsistent results. We aimed to clarify the association between OSA and hypertension, including essential and medication-resistant hypertension. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was followed. PubMed and Embase databases were used for searching the relevant studies published up to December 31, 2016. A quantitative approach of meta-analysis was performed to estimate the pooled odds ratio (OR) and 95% confidence interval (CI)

    Age Differences in the Experience of Daily Life Events: A Study Based on the Social Goals Perspective

    Get PDF
    This study examined age differences in daily life events related to different types of social goals based on the socioemotional selectivity theory (SST), and determined whether the positivity effect existed in the context of social goals in older adults’ daily lives. Over a course of 14 days, 49 older adults and 36 younger adults wrote about up to three life events daily and rated the valence of each event. The findings indicated that (1) although both older and younger adults recorded events related to both emotional and knowledge-acquisition goals, the odds ratio for reporting a higher number of events related to emotional goals compared to the number of events related to knowledge-acquisition goals was 2.12 times higher in older adults than that observed in younger adults. (2) Considering the number of events, there was an age-related positivity effect only for knowledge-related goals, and (3) older adults’ ratings for events related to emotional and knowledge-acquisition goals were significantly more positive compared to those observed in younger adults. These findings supported the SST, and to some extent, the positivity effect was demonstrated in the context of social goals

    Multiwavelength Analysis of a Nearby Heavily Obscured AGN in NGC 449

    Full text link
    We presented the multiwavelength analysis of a heavily obscured active galactic nucleus (AGN) in NGC 449. We first constructed a broadband X-ray spectrum using the latest NuSTAR and XMM-Newton data. Its column density (1024cm2\simeq 10^{24} \rm{cm}^{-2}) and photon index (Γ2.4\Gamma\simeq 2.4) were reliably obtained by analyzing the broadband X-ray spectrum. However, the scattering fraction and the intrinsic X-ray luminosity could not be well constrained. Combined with the information obtained from the mid-infrared (mid-IR) spectrum and spectral energy distribution (SED) fitting, we derived its intrinsic X-ray luminosity (8.54×1042 erg s1\simeq 8.54\times 10^{42} \ \rm{erg\ s}^{-1}) and scattering fraction (fscat0.26%f_{\rm{scat}}\simeq 0.26\%). In addition, we also derived the following results: (1). The mass accretion rate of central AGN is about 2.54×102M yr12.54 \times 10^{-2} \rm{M}_\odot\ \rm{yr}^{-1}, and the Eddington ratio is 8.39×1028.39\times 10^{-2}; (2). The torus of this AGN has a high gas-to-dust ratio (NH/AV=8.40×1022 cm2 mag1N_{\rm H}/A_{\rm V}=8.40\times 10^{22}\ \rm{cm}^{-2}\ \rm{mag}^{-1}); (3). The host galaxy and the central AGN are both in the early stage of co-evolution.Comment: 12 pages, 5 figures, 3 tables, Accepted to PAS

    Discovery of 21 New Changing-look AGNs in Northern Sky

    Full text link
    The rare case of changing-look (CL) AGNs, with the appearance or disappearance of broad Balmer emission lines within a few years, challenges our understanding of the AGN unified model. We present a sample of 21 new CL AGNs at 0.08<z<0.580.08<z<0.58, which doubles the number of such objects known to date. These new CL AGNs were discovered by several ways, from (1) repeat spectra in the SDSS, (2) repeat spectra in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and SDSS, and (3) photometric variability and new spectroscopic observations. We use the photometric data from surveys, including the SDSS imaging survey, the Pan-STARRS1, the DESI Legacy imaging survey, the Wide-field Infrared Survey Explorer (WISE), the Catalina Real-time Transient Survey, and the Palomar Transient Factory. The estimated upper limits of transition timescale of the CL AGNs in this sample spans from 0.9 to 13 years in the rest frame. The continuum flux in the optical and mid-infrared becomes brighter when the CL AGNs turn on, or vice versa. Variations of more than 0.2 mag in W1W1 band were detected in 15 CL AGNs during the transition. The optical and mid-infrared variability is not consistent with the scenario of variable obscuration in 10 CL AGNs at more than 3σ3\sigma confidence level. We confirm a bluer-when-brighter trend in the optical. However, the mid-infrared WISE colors W1W2W1-W2 become redder when the objects become brighter in the W1W1 band, possibly due to a stronger hot dust contribution in the W2W2 band when the AGN activity becomes stronger. The physical mechanism of type transition is important for understanding the evolution of AGNs.Comment: Accepted for publication in Ap

    Three‐stage electric vehicle scheduling considering stakeholders economic inconsistency and battery degradation

    Get PDF
    This study proposes an electric vehicle (EV) aggregator operation mechanism in a residential community. The EV charging and discharging operation behaviours are scheduled to maximise the EV aggregator revenue, while EV aggregator provides reserve service for the grid. This study not only considers the energy and information interactions between three stakeholders: EV aggregator, EV owners, and power grids, but also the economic interests of aggregator and owners are considered. The aggregator-owner economic inconsistency issue (EV owners get higher charging cost in aggregator scheduling than self-scheduling) is presented. In order to mediate this issue, a rebate factor is proposed. In the first stage, the objective is to minimise the day-ahead (DA) charging cost of EV owners. Then the second stage is to maximise DA aggregator revenue with different rebate values. Finally, in the third stage, a real-time scheduling strategy is proposed to maximise aggregator revenue using the optimal rebate value. In addition, the battery degradation in influencing scheduling is formulated. Scheduling results show the effectiveness of the proposed strategy, e.g. economic inconsistency of different parties can be mediated. Significant reduction of EV owners’ cost from self-scheduling can be achieved while the revenue of EV aggregator is maximised under the proposed strategy
    corecore