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Abstract: This study proposes an electric vehicle (EV) aggregator operation mechanism in a residential community. The EV
charging and discharging operation behaviours are scheduled to maximise the EV aggregator revenue, while EV aggregator
provides reserve service for the grid. This study not only considers the energy and information interactions between three
stakeholders: EV aggregator, EV owners, and power grids, but also the economic interests of aggregator and owners are
considered. The aggregator-owner economic inconsistency issue (EV owners get higher charging cost in aggregator scheduling
than self-scheduling) is presented. In order to mediate this issue, a rebate factor is proposed. In the first stage, the objective is
to minimise the day-ahead (DA) charging cost of EV owners. Then the second stage is to maximise DA aggregator revenue with
different rebate values. Finally, in the third stage, a real-time scheduling strategy is proposed to maximise aggregator revenue
using the optimal rebate value. In addition, the battery degradation in influencing scheduling is formulated. Scheduling results
show the effectiveness of the proposed strategy, e.g. economic inconsistency of different parties can be mediated. Significant
reduction of EV owners’ cost from self-scheduling can be achieved while the revenue of EV aggregator is maximised under the
proposed strategy.

1 Introduction
With the tendency of green transportation develops, electric vehicle
(EV) as a green transportation tool has the advantage of better
energy conversion efficiency and no green gas emission compared
with traditional internal combustion vehicle. According to the
Chinese government announcement, a national strategic plan of
electrification of transportation has been made for the year of
2011–2015. In addition, Chinese government sets a plan for ‘ten
cities and thousands units’ to promote the penetration levels of
New-Energy Vehicle (NEV) in public transportation, with the aim
of five million NEVs in 2020 [1]. With the penetration level of EV
increasing, uncoordinated charging of EVs brings new challenges
and problems for power grids operation. Owing to the massive
amount stochastic charging behaviours and huge charging power of
EVs, the stability and capacity of power systems will be affected,
leading to potential issues such as power quality, voltage deviation
and overload problems [2]. To tackle the negative effects of EVs
charging to power systems, a coordinated charging strategy of EVs
should be adopted.

In modern smart grids, the concept of cyber-physical systems
(CPS) provides an opportunity for physical devices realising a
coordination based on information exchange. That is, by utilising
advance sensors, the physical properties and information can be
amalgamated. Finally, the energy use in power grids could be
coordinated properly [3]. In this circumstance, the aggregator is a
promising candidate in CPS, which is an intermediate system to
represent all EVs’ energy requirements to participate in power
grids operation. In this case, energy interactions between EVs and
power grids can be coordinated by the aggregator and thus the
negative effects of EVs to power grids can be eliminated.

The utilisation of demand response (DR) programs provides
opportunities for the information interactions between power grids,
aggregator, and owners. Owners are encouraged to change their
energy usage habits based on price incentives, that is to reduce and
shift their demand during peak periods and thus to obtain financial
incentives. Compared with residential home applicants, EV has a
higher flexibility since during 95% of the period, EVs are parked
and available for coordination [4]. The great flexibility of EV could

satisfy various types of DR programs so to obtain financial income
for EV owners. Moreover, by aggregating the massive amount of
EVs together and working under the vehicle-to-grid (V2G) mode
(charging and discharging), aggregator could provide a large power
range to make responses to power grids, which not only eliminate
the negative impacts of EVs charging behaviours but also improve
power grids reliability. Despite the benefits of V2G, frequent
charging and discharging of EV leads to the battery degradation
increase. The battery degradation problem is the main obstacle to
the widespread implementation of V2G technology [5]. The battery
degradation has significant influence in EV charging and
discharging operations (i.e. EV owners are unwilling to work under
V2G with a high battery degradation fee). Thus, a proper battery
degradation model is necessary during EVs charging and
discharging scheduling, which cannot be neglected.

1.1 Main contributions

This paper introduces a three-stage EV charging and discharging
scheduling strategy in a typical residential community. The
proposed strategy aims to maximise EV aggregator revenue
without sacrificing each EV owner economic benefit. In the first
stage, EV charging and discharging operations are scheduled from
EV owners’ viewpoint (self-scheduling), the objective is to
minimise the charging cost of each owner. The second-stage
scheduling strategy aims to maximise aggregator revenue versus
rebate values by taking EV owners’ economic benefits into
account. The third stage is to apply the optimal rebate value from
the second stage in the real-time (RT) scheduling strategy.
Considering the uncertainty of EV driving behaviours, a model
predictive control (MPC) algorithm is applied in the third stage and
a dynamic RT EV information model is proposed. These three
stages are linked as follows: the first-stage scheduling results of
EV owner charging cost are involved as constraints in the second-
stage scheduling; then the optimal rebate value is determined in the
second-stage scheduling, which will be applied in the third-stage
scheduling.

The main contributions of this paper are highlighted as follows:
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• The economic inconsistency issue is considered in the paper, i.e.
the economic interests of EV owners and EV aggregator are
analysed and the economic inconsistency issue between these
two stakeholders is presented. Moreover, a sensitivity analysis
of the factors in impacting economic inconsistency is presented.

• To mediate the economic inconsistency issue between
aggregator and EV owners, a rebate factor is introduced in this
paper. The optimal rebate value is found in the second-stage
scheduling, which maximises the aggregator revenue under the
condition that there is no charging cost increment for each
owner compared with the results from the first-stage scheduling.

1.2 Paper organisation

The remaining of this paper is organised as follows. Section 2
presents EV charging and discharging scheduling strategies.
Section 3 discusses the three-stage EV charging and discharging
strategy. Section 4 introduces the day-ahead (DA) and RT EV
information models and relevant model settings. Section 5
illustrates the scheduling results and discussions. Finally, Section 6
will draw the conclusions of this paper.

2 EV charging and discharging scheduling
strategies
Numerous previous papers of EV charging and discharging
scheduling are mainly categorised based on three stakeholders: EV
owners, power grids, and EV aggregator.

In [6], an aggregator providing ancillary services to power grids
is proposed. A robust algorithm is applied in the model by
considering the uncertainty of energy and reserve prices based on
linear programming. Further, a battery degradation cost model is
presented. In [7], a two-stage scheduling strategy is proposed to
maximise EV parking deck revenue. A marginal electricity price is
determined in the first stage to maintain the parking deck revenue
and in the second stage, an MPC-based online method is used to
accommodate the uncertainty of EV driving behaviours. In [8], the
authors concentrated on two objectives: maximising parking lot
revenue and maximising the number of EVs fulfilling their
requirements in a two layer (day-head and RT) parking lot
recharging systems. In [9], Jin et al. jointly considered the
aggregator revenue and EV owners cost demand by setting an
upper bound charging cost while maximising aggregator revenue.
In [10], the authors studied EVs charging with energy storage
systems in the regulation market to maximise aggregator revenue
based on mixed-integer linear programming (MILP) algorithm.

Results showed that the aggregator revenue can be improved by
7.8% with the aid of energy storage systems. In [2], the authors
used stochastic programming approach to examine the impact of
different DR programs to EV parking lot profits. The results
demonstrated that by participating selected combination of DR
programs, the parking lot profit can be significantly increased. In
[5], the battery degradation cost is involved in EVs charging and
discharging scheduling model. In the model, the degradation
parameter is related with total discharging energy, so that an
iterative MILP algorithm is adopted. In addition, a sensitive
analysis in affecting charging and discharging strategy is carried
out in terms of discharging reward, charging period and battery
capital cost. In [11], a micro-grid energy management system was
built involving household load, EV, and renewable sources. The
model aimed to minimise the economic cost of energy exchange
between the micro-grid and the main grid.

Table 1 summarises the related works and the proposed work
based on the five aspects: stakeholder viewpoint, objective,
optimisation algorithm, time horizon and decision-making location.

Current researches mainly focus on the optimal operation of EV
charging and discharging from the viewpoint of different
stakeholders: EV owners, power grids, and EV aggregator.
However, there is little work in investigating the relationship
between these stakeholders from the economic benefits
perspective. Due to the fact that EVs belong to each EV owner, the
economic benefits of each EV owner is an important part in
economic interactions among stakeholders. Therefore, it is not
practical to consider the energy and information interactions from
the viewpoint of a single stakeholder.

In [2], the objective function consists of several terms to
maximise aggregator revenue, which contains the income of selling
energy to EV owners and the cost of purchasing energy from EV
owners. However, it is not practical that the EV owners economic
benefits are integrated into the EV aggregator objective function
since different stakeholders’ economic interests are not same. In
[9], the authors jointly considered EV aggregator and EV owner by
involving EV owner's charging cost limit as the key constraint in
aggregator scheduling. However, the EV owner's charging cost is a
parameter and the rationale of providing this parameter is not
provided. In [25], a rebate factor is introduced in the model to
encourage EV owners to participate in power grids operation.
However, the value of rebate factor is not determined, and the
charging cost of EV owners participates in power grids operation is
not discussed (EV owners economic interests are not evaluated).

Table 1 Summary for EV charging and discharging strategies
Authors Viewpoint Objective Algorithm Time horizon Centralised

decentralised
Antunez et al. [12] power grids min grid operation cost MILP RT centralised
Cao et al. [13] EV owners min owner charging fee heuristic algorithm DA centralised
Igualada et al. [11] power grids min grid cost MILP DA centralised
Jin et al. [10] aggregator max aggregator revenue MILP RT centralised
Momber et al. [14] aggregator max aggregator revenue stochastic LP DA centralised
Qian et al. [15] EV owners min charging fee LP DA centralised
Zheng et al. [16] power grids min power fluctuation level genetic algorithm DA centralised
Gao et al. [17] power grids min grid operation cost optimal control algorithm DA decentralised
Kumar et al. [18] power grids min load variation dynamic programming RT centralised
Vaya and Andersson [19] aggregator min charging cost MILP DA centralised
Mohamed et al. [20] EV owners min charging cost fuzzy agent real time decentralised
Wu et al. [21] power grids min operation cost MILP DA centralised
Yang et al. [22] aggregator min purchasing cost stochastic LP real time centralised
Martin et al. [23] power grids max reserve profit stochastic programming DA centralised
Zhang et al. [24] power grids max reserve profit quadratic programming RT centralised
Guo et al. [7] aggregator max aggregator revenue model predictive control RT centralised
Jin et al. [9] EV owners min charging cost LP DA centralised
Melo et al. [6] EV aggregator min charging cost robust optimisation DA centralised
proposed work EV owner EV aggregatormax aggregator revenue MILP DART centralised
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3 Three-stage scheduling strategy
3.1 Problem definition

This section introduces the three-stage scheduling strategy. The
first and second stages are DA strategies and the third stage is a RT
strategy. The concepts of first and second stages are illustrated in
Fig. 1. 

In the first stage, the interaction between EV owner and power
grids is formulated. A DA scheduling strategy (charging and
discharging) is presented aiming to minimise each owner charging
cost based on RT price. After that, the energy and reserve
interactions between EV owners, the aggregator and power grids
are modelled in the second stage where an aggregator participates
in both energy and reserve markets. As a coordinator between
power grids and EV owners, aggregator obtains each EV
information (arrival time, departure time and initial SOC) and
charging cost from EV owners. Then, aggregator schedules all
EVs’ charging and discharging operations based on RT price and
reserve up/down prices. At the same time, the reserve up/down
capacities of the aggregator are determined and submitted to power
grids. Finally, aggregator gains revenue from the grid.

The relationship between energy scheduling and the reserved
energy is illustrated in Fig. 2. It shows a typical single EV under
V2G mode during the available time, the reserved energy (in kWh)

shows the ability of EV to increase or decrease current
consumption energy temporarily based on the requirement of
power grids. At each time, there are three corresponding values for
each single EV: operating power (charging, discharging or idling
status), reserve up capacity and reserve down capacity. By
evaluating reserve up and down capacities at each time, the
flexibility of EV is determined. EV aggregator will submit reserve
up and down capacities with multi-EVs together to power grids and
thus participate in power grids reserve market. Power grids could
call for reserve (reserve deployment) from EV aggregator and thus
keep power girds stability. 

Fig. 3 shows the relationship between operating power, reserve
up capacity and reserve down capacity without considering battery
SOC and EV owner driving requirements. The reserve down
capacity (in kW) is defined as the difference between maximum
charging power with the current operation power and the reserve
up capacity (in kW) is the difference between maximum
discharging power with current operation power. 

3.2 First stage: EV owners’ scheduling strategy

The first stage is to minimise the DA charging cost of each EV
owner Jn

d(xn, t
c, d, xn, t

d, d), ∀t under V2G based on RT price and DA EV
information [ta, n

d , td, n
d , SOCini, n

d ], ∀n. The EV owner charging cost
consists of three terms: (i) charging fee for purchasing energy from
the grid, (ii) discharging income for selling energy back to the grid
and (iii) corresponding battery degradation fee both for charging
and discharging. Since EV operations are independent of each
other [7], the objective function of each EV owner can be
integrated as follows:

Min ∑
n = 1

N
Jn

d = ∑
t = 0

M

∑
n = 1

N
pn(rt, 1

c xn, t
c, d − rt, 1

d xn, t
d, d)ΔT

+ ∑
t = 0

M

∑
n = 1

N
Cdpn(xn, t

c, d + xn, t
d, d)ΔT

(1)

where M is the total time intervals; N is the total EV number; rt, 1
c

are rt, 1
d  are purchasing and selling RT price information of owners

obtained from power grids at time t; pn stands for the maximum
charging and discharging power of EV n; xn, t

c, d and xn, t
d, d are DA

charging and discharging variables of the model, respectively; Cd is
the degradation parameter of the battery with the unit $/kWh and T
is the time interval. To enhance the energy interactions between the
EVs and the grids, EV owners will be rewarded for discharging
according to feed-in-policy [5], i.e. rt, 1

c = rt, 1
c + s, where s is a

positive real number representing the V2G reward tariff in $/kWh
to encourage EV owners to discharge energy

xn, t
c, d =

0 0 ≤ t < ta, n
d before arrival

1 ta, n
d ≤ t ≤ td, n

d charging
0 ta, n

d ≤ t ≤ td, n
d idling or discharging

0 td, n
d < t ≤ M after departure

∀n, ∀t (2)

xn, t
d, d =

0 0 ≤ t < ta, n
d before arrival

1 ta, n
d ≤ t ≤ td, n

d discharging
0 ta, n

d ≤ t ≤ td, n
d charging or idling

0 td, n
d < t ≤ M after departure

∀n, ∀t (3)

In constraints (2) and (3), xn, t
c, d and xn, t

d, d are 0, 1 integer variables to
represent the charging (xn, t

c, d = 1, xn, t
d, d = 0), discharging (xn, t

c, d = 0,
xn, t

d, d = 1) and idling (xn, t
c, d = 0, xn, t

d, d = 0) status of EV during
available time. ta, n

d  and td, n
d  are DA EV information for arrival time

and departure time of EV n

Fig. 1  First and second stages scheduling strategy
 

Fig. 2  Energy scheduling and corresponding reserved energy
 

Fig. 3  Operating power and reserve capacity (without SOC and driving
constraints)
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xn, t
c, d + xn, t

d, d ≤ 1 ∀t, ∀n (4)

Constraint (4) makes sure EV only has one status during operation,
i.e. EV cannot operate at two statuses for charging and discharging
simultaneously

SOCn
t = SOCn

t − 1 + pn(xn, t
c, d − xn, t

d, d)ΔT
En

∀t, ∀n (5)

The relationship between charging and discharging power with EV
battery SOC is described in (5), where En is the battery capacity of
EV n

SOC ≤ SOCn
t ≤ SOC ∀t, ∀n (6)

SOCn
t = SOCini, n

d t = ta, n
d , ∀n (7)

SOCn
t ≥ SOCdep t = td, n

d , ∀n (8)

In constraint (6), SOC and SOC are the lower and upper bounds for
EV battery SOC, respectively, to prevent the battery from over
discharging or charging. Furthermore, constraint (7) defines the
initial SOC equals to SOCini, n

d , where SOCini, n
d  is obtained from DA

EV information of EV n. To guarantee EV owners driving
requirements, each EV should be charged with a level no less than
the desired SOC value SOCdep. In this paper, it is assumed that
SOCdep is a constant for all EVs.

Battery degradation is an important parameter to be considered
under V2G for EV owners. It is assumed that the EV charging and
discharging behaviours both could lead to battery degradation, and
the cost is formulated in the second part of the objective function
(1), in which Cd represents the corresponding battery degradation
cost due to EV charging and discharging behaviours and it is
calculated as

Cd = Cc
Lc ⋅ En ⋅ DoD (9)

where Cc is the battery capital cost in $, Lc is the cycling times and
the DoD stands for the depth of discharge [26].

3.3 Second stage: optimal rebate value for aggregator

The second stage aims to maximise DA aggregator revenue
Hd(xn, t

c, d, xn, t
d, d, zn, t

up, d, zn, t
dw, d) from EV aggregator's viewpoint.

According to DA EV information [ta, n
d , td, n

d , SOCini, n
d ], the objective

function of EV aggregator is formulated as

Max Hd = Ires
d − Cgri

d + Iown
d − Creb

d (10)

which consists of four terms: (i) reserve income Ires
d  for providing

reserve up/down services for power grids; (ii) Cgri
d  represents the

cost of aggregator-grid energy interactions (purchasing and selling
energy); (iii) Iown

d  stands for the income of aggregator-owner
energy interactions and (iv) Creb

d  is the rebate fee provided by
aggregator for each EV owner to guarantee their economic
benefits.

The first term of (10) is the reserve revenue which is obtained
based on reserve up/down prices, which is shown in

Ires
d = ∑

t = 0

M

∑
n = 1

N
pn(gt

upzn, t
up, d + gt

dwzn, t
dw, d)ΔT (11)

where gt
up and gt

dw are reserve up and down prices at time t,
respectively; zn, t

up, d and zn, t
dw, d are DA reserve up and down capacities,

respectively, for EV n at time t.

The second term of (10) is the energy interaction between
aggregator and grids, which includes purchasing fee and selling
income and it is given as

Cgri
d = ∑

t = 0

M

∑
n = 1

N
pn(rt, 2

c xn, t
c, d − rt, 2

d xn, t
d, d)ΔT (12)

where rt, 2
c  and rt, 2

d  are purchasing and selling RT prices between the
aggregator and the grid, respectively.

The third term of (10) describes the energy interaction between
aggregator and EV owners including purchasing fee and selling
income, which is given as

Iown
d = ∑

t = 0

M

∑
n = 1

N
pn(rt, 3

c xn, t
c, d − rt, 3

d xn, t
d, d)ΔT (13)

where rt, 3
c  and rt, 3

d  are selling and purchasing RT prices between the
aggregator and owner, respectively.

The last term of (10) is the rebate fee for each EV provided by
the aggregator. It represents the economic interaction between the
aggregator and each EV owner, which means that EV owner will
receive rebate income both for charging and discharging under
aggregator scheduling. The equation is formulated as

Creb
d = ∑

t = 0

M

∑
n = 1

N
αpn(xn, t

c, d + xn, t
d, d)ΔT (14)

where α stands for the rebate factor with the unit $/kWh.
From EV aggregator stakeholder's viewpoint, the scheduling

has common constraints with the self-scheduling subject to (2)–(9).
Moreover, there are several constraints of aggregator for providing
reserve service to power grids.

The reserve capacity is limited by the operating status and
maximum charging and discharging power. Constraint (15) shows
the sum of reserve down capacity and operating power should be
no more than the maximum charging power. The reserve up
capacity is determined based on (16), it shows that the difference
between operating status and reserve up capacity should not be less
than the maximum discharging power

xn, t
c, d − xn, t

d, d + zn, t
dw, d ≤ 1 ∀t, ∀n (15)

xn, t
c, d − xn, t

d, d − zn, t
up, d ≥ − 1 ∀t, ∀n (16)

where zn, t
up, d and zn, t

dw, d are integer variables (0, 1 and 2) of DA
reserve up and down capacities of EV n at time t.

The reserve up and down capacities depend not only on the
operation status but also on the upper and lower bounds battery
SOC, which are shown in

SOCn
t − 1 + pn(xn, t

c, d − xn, t
d, d + zn, t

dw, d)ΔT
En

≤ SOC ∀t, ∀n (17)

SOCn
t − 1 + pn(xn, t

c, d − xn, t
d, d − zn, t

up, d)ΔT
En

≥ SOC ∀t, ∀n (18)

In addition, the reserve up capacity is also limited by the driving
requirement of EV owners, so the minimum SOC at each time
SOCt is involved to make sure that battery SOC is not less than
SOCdep at departure time and the constraints are shown in

SOCn
t − 1 + pn(xn, t

c, d − xn, t
d, d − zn, t

up, d)ΔT
En

≥ SOCt ∀t, ∀n (19)

SOCt = max SOC, SOCdep − pn(M − t)ΔT
En

∀t, ∀n (20)

4 IET Cyber-Phys. Syst., Theory Appl.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



where (20) determines the minimum SOC during available time.
The concepts of upper and lower bounds and minimum SOC at
each time are illustrated in Fig. 2.

To guarantee EV owners’ economic benefits, a rebate factor is
introduced in the model to make sure charging cost does not
exceed the DA self-scheduling charging cost for each owner. The
constraint is shown in

∑
t = 0

M
pn(rt, 3

c xn, t
c, d − rt, 3

d xn, t
d, d)ΔT + ∑

t = 0

M
Cdpn(xn, t

c, d + xn, t
d, d)ΔT

− ∑
t = 0

M
αpn(xn, t

c, d + xn, t
d, d)ΔT ≤ (1 − K)Jn

d ∀n
(21)

where K is a discount parameter offered by EV aggregator to
provide a lower charging cost (compared with self-scheduling Jn

d)
for EV owners and thus it can attract more EVs to participate in
aggregator scheduling.

The scheduling results for the second stage is to obtain the
optimal rebate value αopt which maximises the aggregator revenue
without sacrificing each EV owner's economic benefit. In addition,
non-optimal rebate factor in a range will still work for the model,
only slightly affect the revenue of aggregator.

3.4 Third stage: RT aggregator scheduling strategy

This section presents the aggregator revenue maximisation strategy
in a RT scenario. The optimal rebate value αopt obtained from the
second stage is involved in this stage. Owing to the reason that EV
owner driving behaviours are difficult to predict, the strategy needs
to be re-scheduled based on the dynamic RT EV information. In
this case, an MPC-based algorithm is proposed in the third stage,
i.e. EV aggregator schedules the operation behaviours based on RT
EV information, and only the first step is dispatched to each EV.
After that, EVs update their information. Finally, EV aggregator
repeats for the next step scheduling.

In this stage, all variables and parameters consist of two types
in terms of fixed and predicted EV information.
[xq, t

c, f , xq, t
c, f , zq, t

up, f , zq, t
dw, f ] are variables of fixed EV information

[ta, q
f , td, q

f , SOCini, q
f ], and [xw, t

c, p, xw, t
c, p, zw, t

up, p, zw, t
dw, p] are variables of

predicted EV information [ta, w
p , td, w

p , SOCini, w
p ]. Note that all

variables and parameters in the third stage have the same format
with the second stage and the objective function given as

Max Hr = Ires
f − Cgri

f + Iown
f − Creb

f

+Ires
p − Cgri

p + Iown
p − Creb

p
(22)

where Hr represents the RT aggregator revenue.
The scheduling strategy is implemented as follows:

1. EV owner receives RT price from the power grid for DA self-
scheduling and obtains each owner charging cost based on the
objective function (1), subjects to (2)–(9).

2. EV aggregator receives RT price, reserve price, DA EV
information and each owner charging cost for DA scheduling
with the objective function (10), subjects to (2)–(9) and (15)–
(21). The optimal rebate value is obtained.

3. EV aggregator schedules all EVs based on dynamic RT EV
information, updated owner charging cost, price signals and
optimal rebate value for RT scheduling.

4. Implement the results from the first step to a fixed number of
EVs (in the community) and update their EV information as

SOCini, q
f = SOCini, q

f + pq∑t + 1
t + T0 (xq, t

c, f − xq, t
d, f )ΔT

Eq

∀q
(23)

(see (24)) 
5. Re-predict EV information

[ta, w
p , td, w

p , SOCini, w
p ], ∀w = 1, . . . , W  for EVs not in the

community.
6. Update the dynamic RT EV information and time based on

(25). After that, repeat the MPC process from Step 3

t = t + T0 (25)

To summarise, the proposed three-stage scheduling strategy is
illustrated by a flowchart given in Fig. 4. 

4 Case studies
4.1 EV information model

In the first and second stages, the scheduling strategies are carried
out based on DA EV information. To describe the DA EV
information mathematically, a Gaussian model is applied. It is
assumed that the arrival time and departure time and initial SOC of
each EV follow a Gaussian distribution. The parameters of three
Gaussian distributions are summarised in Table 2. 

In the third stage, due to the reason that EV driving behaviours
are difficult to predict, a RT EV information model is presented.
An assumption is made that for EVs already in the community and
will come to the community in the following T0 period, these EVs
information will not change. Otherwise, EV information is
generated based on the Gaussian distribution (EVs are not in the
community). The concept of the RT EV information model is
shown in Fig. 5. In Fig. 5, the arrival time of EV 1 is earlier than
the current time (i.e. ta, 1 < t + T0), therefore EV 1 is already in the
community and its EV information is fixed. In contrast, EV 2 is not
in the community since the predicted arrival time is beyond current
time (i.e. ta, 2 > t + T0). Thus, the EV information of EV 2 is not
fixed and it needs to be re-predicted for the next scheduling round.
For EV 3, it is assumed that EV information can be predicted
accurately in the following T0 period so that its information is also
fixed for the reason that the arrival time is between the current time
and the next scheduling time (t ≤ ta, 3 ≤ t + T0). 

4.2 Model settings

A typical residential community is considered in this paper. The
total time period is 24-four hours (13:00–13:00 next day) and the
scheduling interval is set to ΔT = 1 h. Thus, the total time interval
is M = 24. The performance of 100 EVs is examined in this case, N 
= 100. In the third stage, the scheduling process repeats hourly, so
the receding horizon is T0 = ΔT . The upper and lower bound SOCs
are SOC = 1 and SOC = 0 (these figures are generic and can be
easily changed according to requirements) for all EVs and deep of

(1 − K)Jq
f = (1 − K)Jq

f − ∑
t + 1

t + T0

pq(rt, 3
c xq, t

c, f − rt, 3
d xq, t

d, f )ΔT

+ ∑
t + 1

t + T0

Cdpq(xq, t
c, f + xq, t

d, f )ΔT

− ∑
t + 1

t + T0

αpq(xq, t
c, f + xq, t

d, f )ΔT ∀q

(24)
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discharge is set as DoD = 1. It is assumed that all EVs in the model
are BYD e6 with battery capacity En = 64 kWh [27] and constant
charging and discharging power pn = 8 kW.

For simplification, the RT price tariff between power grids
aggregator and EV owners are all with the same value (i.e.
rt, 1

c = rt, 2
c = rt, 3

c , rt, 1
d = rt, 2

d = rt, 3
d ), and the RT price (purchasing

energy price) and reserve price are available in Fig. 6 [28]. 

5 Scheduling results
In this section, the performance of the proposed strategy is
evaluated. The three-stage scheduling strategy is formulated to

three MILP problems based on MATLAB and solved by CPLEX
[29].

5.1 Economic interests of EV owners considering battery
degradation

The EV owner self-scheduling results in the first stage are depicted
in Fig. 7. To examine the charging cost of EV owners operate
under V2G, different degradation values are used in the model.
Compared with the RT price information, it can be observed that
all EVs operate at charging status during off-peak hours (low price)
and operate at discharging status during peak hours (high price)
under degradation 0.083 and 0.086 $/kWh. However, there are no
discharging behaviours for all EVs under degradation value 0.090 
$/kWh. This is due to the reason that the V2G reward tariff cannot
cover the degradation fee for EV owners to operate under V2G. 

Furthermore, Table 3 shows the total charging cost for all EVs
including charging fee, discharging income and degradation fee
versus degradation. 

It can be seen from Table 3 that, the charging fee and
discharging income both decrease ($49.79 to $27.31 and $390.46
to 0) with the degradation increase. This is due to the reason that
frequent energy interaction between EVs and grids leads to an
increase of degradation fee. Therefore, the degradation factor has
significant influence in EV charging and discharging scheduling,
and EV owners would like to be involved under V2G under the
condition that the V2G reward tariff provided by power grids can
cover their battery degradation fee.

5.2 Economic interests of EV aggregator

In this section, only the EV aggregator economic interests are taken
into account (ignore the economic interaction between the
aggregator and the EV owners), so that the rebate factor in (10) and
EV charging cost constraint (21) are not considered in EV
aggregator scheduling. In this case, the objective function of
maximising EV aggregator revenue without rebate factor is given
as

Max Ires − Cgri + Iown (26)

Since it is assumed that the prices tariff between owner-aggregator
and aggregator-grid are the same, two terms in (26) can be
cancelled each other (i.e. Iown − Cgri = 0). In this case, the EV
maximum aggregator revenue is deterministic since reserve prices
and EV information are both fixed. The aggregator scheduling
results for reserve up/down capacities are illustrated in Fig. 8. It
can be seen from the figure that the reserve up/down capacities are
scheduled based on corresponding prices in Fig. 6, which describes
the response ability of aggregator in meeting temporary power
grids requirements. That is, the reserve up/down capacities enable
aggregator to decrease/increase its current operating power based
on power grids demands. Fig. 9 shows both charging and

Fig. 4  Flowchart of the three-stage scheduling strategy
 

Table 2 DA EV information parameters
Mean Variance Min Max

initial SOC 0.3 0.1 0 1
arrival time 18:00 2 h 13:00 13:00 next day
departure time 07:00 2 h 13:00 13:00 next day
 

Fig. 5  RT EV information model
 

Fig. 6  RT price and reserve prices
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discharging operations and reserve capacity results along 24 h. EV
aggregator enables power grids to call for the reserve to absorb or
inject energy back temporarily and thus improves power grids
stability. Therefore, EV aggregator gains revenue by providing
reserve up/down capacities to power grids. 

5.3 Economic inconsistency between stakeholders

In this section, the economic inconsistency issue is presented
which is described as the total charging cost increment percentage.
A sensitive analysis of impacting economic inconsistency is
illustrated in terms of degradation, maximum charging/discharging
power and battery capacity.

The total cost for EV owners self-scheduling and aggregator
scheduling associate with different battery degradation values are
summarised in Table 4. It can be observed from Table 4 that total
charging cost for self and aggregator scheduling both increase with
degradation value increase. Moreover, the economic inconsistency
issue becomes significant with a higher degradation value (+20.80
to +25.48%). This is due to the reason that the frequent energy
interaction between EV and power grids causes high battery
degradation fee. 

The impact of different charging and discharging power of EVs
in influencing economic inconsistency issue is shown in Table 5.
The results in this table suggest that the economic inconsistency is
reduced (from +20.80 to +14.59%) with the charging and
discharging power increase. 

In addition, the impacts of different battery capacity values are
examined in the model. Scheduling results are shown in Table 6
that with the battery capacity increase, the economic inconsistency
issue is reduced, that is the charging cost increment percentage
decreases from +20.80 to +18.00%. 

5.4 Optimal rebate value

In the previous section, the existence of economic between EV
owners and aggregator is demonstrated and the impacting factors
are analysed. That is EV owner charging cost increases under
aggregator scheduling compared with EV owners self-scheduling.
In order to mediate the economic inconsistency issue, a rebate
factor is proposed in the model in the second-stage scheduling. By
introducing a rebate factor in the second-stage scheduling strategy,
it enables the model jointly consider two stakeholders economic
interests.

The relationship between maximum EV aggregator revenue and
the value of rebate factor is described in Figs. 10 and 11. These
figures suggest that there exists an optimal rebate factor value
which can achieve aggregator revenue maximised. The maximum
aggregator revenue is obtained with αopt = 0.0046 $/kWh,
αopt = 0.0056 $/kWh under different discount values. For a
relatively smaller rebate factor, EVs charging and discharging
operations mainly depend on the self-scheduling, which restrict
aggregator to make a response to power grids, and aggregator has a
lower flexibility to schedule EVs based on the reserve up/down
prices. On the contrary, for a relatively higher rebate value, the
aggregator has more incentive to involve EVs in reserve markets.
However, a higher rebate value requires more rebate fee to EV
owners from the EV aggregator and thus reduces aggregator
revenue. 

In Fig. 12, ten EV owners charging cost are presented both
under self and aggregator scheduling with a different value of
discount and corresponding optimal rebate values. It can be found
from the figure that, each EV owner charging cost under
aggregator scheduling is less than the one under self-scheduling (5
and 7.5% discount). The results verified the effectiveness of the
proposed rebate factor in the second-stage scheduling. These
results demonstrate the proposed strategy motivates EV owners to
participate in aggregator scheduling (a lower charging cost under
aggregator scheduling than self-scheduling). However, the
aggregator revenue will significantly decrease under a higher
discount ($37.02 with 5% discount and $32.04 with 7.5% discount
in Figs. 10 and 11). 

5.5 MPC-based RT scheduling strategy

In the third-stage scheduling, the stochastic driving behaviours of
EV owner are considered in the model. That is, EV information
cannot be predicted accurately, thus a dynamic RT EV information
(fixed and predicted) is adopted during the scheduling. The
scheduling results of DA and RT are presented in Fig. 13 with

Fig. 7  EV owners self-scheduling versus degradation
 

Table 3 EV owner charging cost versus degradation
Degradation, $/kWh 0.083 0.086 0.090
charging fee, $ 49.79 32.33 27.31
discharging income, $ 390.46 108.76 0
degradation fee, $ 646.74 400.42 311.04
total cost, $ 306.06 323.99 338.35

 

Fig. 8  Aggregator scheduling results for reserve up/down capacities
 

Fig. 9  Operating power and reserve capacity for aggregator revenue
maximisation

 
Table 4 Economic inconsistency versus degradation
Degradation, $/kWh 0.083 0.086 0.090
self-scheduling, $ 306.06 324.00 383.35
aggregator scheduling, $ 369.72 393.21 424.54
increment, % +20.80 +21.37 +25.48
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degradation Cd = 0.083 $/kWh and discount K = 0.05. Since in the
DA EV information is fixed, the results of the second-stage
scheduling (DA aggregator revenue maximisation) are
deterministic. On the contrary, the dynamic RT EV information

needs to be re-predicted due to the prediction errors. In this case,
the RT scheduling results are not the same with day-head results. 

In Fig. 13, the RT scheduling strategy is repeated for seven
times to represent daily aggregator revenue in a week, i.e. from
RT1 to RT7. It is assumed that the DA EV information in the
whole week is the same. Based on the observation from the results,
the daily RT aggregator revenue in a week are $36.85, $34.19,
$33.05, $36.70, $31.79, $36.05 and $32.87. Which are not equal to
DA aggregator revenue $34.22 due to the reason of RT EV
information is stochastic.

6 Conclusion
In this paper, a three-stage EV charging and discharging scheduling
strategy is proposed in a residential community from the viewpoint
of two stakeholders (EV owner and aggregator): to minimise each
EV owner charging cost and maximise aggregator revenue. The
energy, reserve and economic interactions between power grids,
EV aggregator, and EV owners are discussed. EV owners minimise
their charging cost in energy market based on RT price and V2G
reward tariff provided by power grids. Aggregator maximises its
revenue by participating in reserve market. Since two stakeholders
have different objectives, the economic inconsistency issue is
analysed. Moreover, the stochastic driving behaviours of EV
owners are considered in the model.

The main outcomes of this paper are summarised as follows:

• The model is carried out from the viewpoint of two
stakeholders, respectively. In the first-stage scheduling, each EV
owner charging cost is minimised and the battery degradation
factor in influencing the charging cost of EV owner participating
in V2G is evaluated. By implementing sufficient V2G reward
tariff and the developing EV battery technology, EV owners are
willing to participate in V2G to enhance energy interaction
between power grids and EVs.

• The impact of degradation, maximum charging and discharging
power and battery capacity in influencing economic
inconsistency issue is discussed.

• To mediate the economic inconsistency issue between
stakeholders, a rebate factor is proposed in the second-stage
scheduling, which stands for the economic interaction between
aggregator and EV owners. Results show the effectiveness of
this strategy: EV owner charging cost under aggregator
scheduling is less than the one in self-scheduling.

• An MPC-based RT scheduling strategy is adopted in the third
stage. The stochastic driving behaviours of EV owner are
considered in the model, which makes scheduling results more
practical in real-world scenarios.

The future research will focus on the reserve and regulation
services between aggregator and power grids. That is to say, power
grids can call for reserve temporarily based on its requirement and
aggregator ability. Moreover, the relationship between charging
cost and participation needs to be analysed, and thus a proper
discount value can be obtained.

Table 5 Economic inconsistency versus power
Charging/discharging power, kW 8 10 12
self-scheduling, $ 306.06 324.00 383.35
aggregator scheduling, $ 369.72 385.04 439.28
increment, % +20.80 +18.84 +14.59

 

Table 6 Economic inconsistency versus capacity
Battery capacity, kWh 64 72 80
self-scheduling, $ 306.06 324.00 383.35
aggregator scheduling, $ 369.72 385.66 452.35
increment, % +20.80 +19.30 +18.00

 

Fig. 10  Maximum aggregator revenue versus rebate value (discount = 
5%)

 

Fig. 11  Maximum aggregator revenue versus rebate value (discount = 
7.5%)

 

Fig. 12  EV owner charging cost (self and aggregator scheduling) versus
discount value

 

Fig. 13  DA and RT aggregator revenue in a week
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