73 research outputs found

    Analysis on shear lag effect of three-span continuous curve steel box-section girder

    Get PDF
    Analysis on shear lag effect of curved box-section girder use finite element analysis software, by change three-span continuous curve steel’s space geometry parameter into explore basic model, which study different central angel and different curvature radius influence take part act on three span continuous curve steel box-section girder. By analysis on shear lag effect of different central angel, we can draw a conclusion that the shear lag effect on inner side and outer side can appear a simultaneity. When inner side joint point approach plus max, in the same time the outer side joint point approach minus max. When curve box-section girder in earthquake effect, the inner side is much larger than outer side. When other factors are not change, the change of central angel influence a lot on shear lag effect. The central angel is smaller, the bigger shear lag on midspan’s inner side than outer side. When only change curve radius, the smaller curve radius is, the bigger on midspan’s outer side than inner side

    Project external environmental factors affecting project delivery systems selection

    Get PDF
    Project delivery systems (PDSs) selection is crucial to construction project management success. The matching between construction projects and PDSs is hypersensitive to project external environment. Existing studies on selecting PDSs mainly focus on owner’s and project’s characteristics and attach less attention to project environmental factors. This study, therefore, aims to formally identify key project external environmental factors affecting PDSs selection using a data-driven approach. Key factors are summarized and identified through the granular computing method based on 61 Chinese project samples. Empirical results indicate that four factors including market competitiveness, technology accessibility, material availability, and regulatory impact are critical to PDSs selection. This study extended previous research findings on PDSs selection from a perspective of project external environments. Research conclusions can be used as references underpinning construction owners selecting appropriate PDSs considering project external environmental factors

    Phylogenomic reappraisal of the family Rhizobiaceae at the genus and species levels, including the description of Ectorhizobium quercum gen. nov., sp. nov.

    Get PDF
    The family Rhizobiaceae contains 19 validly described genera including the rhizobia groups, many of which are important nitrogen-fixing bacteria. Early classification of Rhizobiaceae relied heavily on the poorly resolved 16S rRNA genes and resulted in several taxonomic conflicts. Although several recent studies illustrated the taxonomic status of many members in the family Rhizobiaceae, several para- and polyphyletic genera still needed to be elucidated. The rapidly increasing number of genomes in Rhizobiaceae has allowed for a revision of the taxonomic identities of members in Rhizobiaceae. In this study, we performed analyses of genome-based phylogeny and phylogenomic metrics to review the relationships of 155-type strains within the family Rhizobiaceae. The UBCG and concatenated protein phylogenetic trees, constructed based on 92 core genes and concatenated alignment of 170 single-copy orthologous proteins, demonstrated that the taxonomic inconsistencies should be assigned to eight novel genera, and 22 species should be recombined. All these reclassifications were also confirmed by pairwise cpAAI values, which separated genera within the family Rhizobiaceae with a demarcation threshold of ~86%. In addition, along with the phenotypic and chemotaxonomic analyses, a novel strain BDR2-2T belonging to a novel genus of the family Rhizobiaceae was also confirmed, for which the name Ectorhizobium quercum gen. nov., sp. nov. was proposed. The type strain is BDR2-2T (=CFCC 16492T = LMG 31717T)

    TractCloud: Registration-free tractography parcellation with a novel local-global streamline point cloud representation

    Full text link
    Diffusion MRI tractography parcellation classifies streamlines into anatomical fiber tracts to enable quantification and visualization for clinical and scientific applications. Current tractography parcellation methods rely heavily on registration, but registration inaccuracies can affect parcellation and the computational cost of registration is high for large-scale datasets. Recently, deep-learning-based methods have been proposed for tractography parcellation using various types of representations for streamlines. However, these methods only focus on the information from a single streamline, ignoring geometric relationships between the streamlines in the brain. We propose TractCloud, a registration-free framework that performs whole-brain tractography parcellation directly in individual subject space. We propose a novel, learnable, local-global streamline representation that leverages information from neighboring and whole-brain streamlines to describe the local anatomy and global pose of the brain. We train our framework on a large-scale labeled tractography dataset, which we augment by applying synthetic transforms including rotation, scaling, and translations. We test our framework on five independently acquired datasets across populations and health conditions. TractCloud significantly outperforms several state-of-the-art methods on all testing datasets. TractCloud achieves efficient and consistent whole-brain white matter parcellation across the lifespan (from neonates to elderly subjects, including brain tumor patients) without the need for registration. The robustness and high inference speed of TractCloud make it suitable for large-scale tractography data analysis. Our project page is available at https://tractcloud.github.io/.Comment: MICCAI 202

    Superficial White Matter Analysis: An Efficient Point-cloud-based Deep Learning Framework with Supervised Contrastive Learning for Consistent Tractography Parcellation across Populations and dMRI Acquisitions

    Full text link
    Diffusion MRI tractography is an advanced imaging technique that enables in vivo mapping of the brain's white matter connections. White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts. It enables quantification and visualization of whole-brain tractography. Currently, most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity. We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient and consistent parcellation of 198 SWM clusters from whole-brain tractography. A point-cloud-based network is adapted to our SWM parcellation task, and supervised contrastive learning enables more discriminative representations between plausible streamlines and outliers for SWM. We train our model on a large-scale tractography dataset including streamline samples from labeled SWM clusters and anatomically implausible streamline samples, and we perform testing on six independently acquired datasets of different ages and health conditions (including neonates and patients with space-occupying brain tumors). Compared to several state-of-the-art methods, SupWMA obtains highly consistent and accurate SWM parcellation results on all datasets, showing good generalization across the lifespan in health and disease. In addition, the computational speed of SupWMA is much faster than other methods.Comment: 12 pages, 7 figures. Extension of our ISBI 2022 paper (arXiv:2201.12528) (Best Paper Award Finalist

    Genome-Wide Characterization and Analysis of bHLH Transcription Factors Related to Anthocyanin Biosynthesis in Cinnamomum camphora ('Gantong 1')

    Get PDF
    Cinnamomum camphora is one of the most commonly used tree species in landscaping. Improving its ornamental traits, particularly bark and leaf colors, is one of the key breeding goals. The basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial in controlling anthocyanin biosynthesis in many plants. However, their role in C. camphora remains largely unknown. In this study, we identified 150 bHLH TFs (CcbHLHs) using natural mutant C. camphora 'Gantong 1', which has unusual bark and leaf colors. Phylogenetic analysis revealed that 150 CcbHLHs were divided into 26 subfamilies which shared similar gene structures and conserved motifs. According to the protein homology analysis, we identified four candidate CcbHLHs that were highly conserved compared to the TT8 protein in A. thaliana. These TFs are potentially involved in anthocyanin biosynthesis in C. camphora. RNA-seq analysis revealed specific expression patterns of CcbHLHs in different tissue types. Furthermore, we verified expression patterns of seven CcbHLHs (CcbHLH001, CcbHLH015, CcbHLH017, CcbHLH022, CcbHLH101, CcbHLH118, and CcbHLH134) in various tissue types at different growth stages using qRT-PCR. This study opens a new avenue for subsequent research on anthocyanin biosynthesis regulated by CcbHLH TFs in C. camphora

    TractGeoNet: A geometric deep learning framework for pointwise analysis of tract microstructure to predict language assessment performance

    Full text link
    We propose a geometric deep-learning-based framework, TractGeoNet, for performing regression using diffusion magnetic resonance imaging (dMRI) tractography and associated pointwise tissue microstructure measurements. By employing a point cloud representation, TractGeoNet can directly utilize pointwise tissue microstructure and positional information from all points within a fiber tract. To improve regression performance, we propose a novel loss function, the Paired-Siamese Regression loss, which encourages the model to focus on accurately predicting the relative differences between regression label scores rather than just their absolute values. In addition, we propose a Critical Region Localization algorithm to identify highly predictive anatomical regions within the white matter fiber tracts for the regression task. We evaluate the effectiveness of the proposed method by predicting individual performance on two neuropsychological assessments of language using a dataset of 20 association white matter fiber tracts from 806 subjects from the Human Connectome Project. The results demonstrate superior prediction performance of TractGeoNet compared to several popular regression models. Of the twenty tracts studied, we find that the left arcuate fasciculus tract is the most highly predictive of the two studied language performance assessments. The localized critical regions are widespread and distributed across both hemispheres and all cerebral lobes, including areas of the brain considered important for language function such as superior and anterior temporal regions, pars opercularis, and precentral gyrus. Overall, TractGeoNet demonstrates the potential of geometric deep learning to enhance the study of the brain's white matter fiber tracts and to relate their structure to human traits such as language performance.Comment: 28 pages, 7 figure

    Integrated inverse design of ventilation for an aircraft cabin

    Get PDF
    Cabin ventilation is crucial for maintaining thermal comfort and air quality for passengers and crew. The genetic algorithm, proper orthogonal decomposition (POD), and adjoint method have been proposed to inversely design the cabin ventilation. However, each method has its cons and pros. This paper proposed to integrate the above three methods in cascades. The genetic algorithm was applied first in the first stage to roughly circumscribe the ranges of design parameters. Then POD was applied in the next stage to further narrow the ranges and estimate the optimal parametric sets for each design criterion. The estimated optimal design from POD was supplied to the adjoint method for fine tuning. The air-supply parameters of a five-row aircraft cabin were inversely designed to achieve the minimum absolute value of the predicted mean vote (PMV) and the minimum averaged mean age of air. The results showed that the integrated method was able to improve the design stage by stage. The integrated method has superior advantages to assure the optimal design while minimizing the computing expense

    Considering Genetic Heterogeneity in the Association Analysis Finds Genes Associated With Nicotine Dependence

    Get PDF
    While substantial progress has been made in finding genetic variants associated with nicotine dependence (ND), a large proportion of the genetic variants remain undiscovered. The current research focuses have shifted toward uncovering rare variants, gene-gene/gene-environment interactions, and structural variations predisposing to ND, the impact of genetic heterogeneity in ND has been nevertheless paid less attention. The study of genetic heterogeneity in ND not only could enhance the power of detecting genetic variants with heterogeneous effects in the population but also improve our understanding of genetic etiology of ND. As an initial step to understand genetic heterogeneity in ND, we applied a newly developed heterogeneity weighted U (HWU) method to 26 ND-related genes, investigating heterogeneous effects of these 26 genes in ND. We found no strong evidence of genetic heterogeneity in genes such as CHRNA5. However, results from our analysis suggest heterogeneous effects of CHRNA6 and CHRNB3 on nicotine dependence in males and females. Following the gene-based analysis, we further conduct a joint association analysis of two gene clusters, CHRNA5-CHRNA3-CHRNB4 and CHRNB3-CHRNA6. While both CHRNA5-CHRNA3-CHRNB4 and CHRNB3-CHRNA6 clusters are significantly associated with ND, there is a much stronger association of CHRNB3-CHRNA6 with ND when considering heterogeneous effects in gender (p-value = 2.11E-07)
    corecore