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Abstract. Cabin ventilation is crucial for maintaining thermal comfort and air quality for 
passengers and crew. The genetic algorithm, proper orthogonal decomposition (POD), and adjoint 
method have been proposed to inversely design the cabin ventilation. However, each method has its 
cons and pros. This paper proposed to integrate the above three methods in cascades. The genetic 
algorithm was applied first in the first stage to roughly circumscribe the ranges of design parameters. 
Then POD was applied in the next stage to further narrow the ranges and estimate the optimal 
parametric sets for each design criterion. The estimated optimal design from POD was supplied to 
the adjoint method for fine tuning. The air-supply parameters of a five-row aircraft cabin were 
inversely designed to achieve the minimum absolute value of the predicted mean vote (PMV) and 
the minimum averaged mean age of air. The results showed that the integrated method was able to 
improve the design stage by stage. The integrated method has superior advantages to assure the 
optimal design while minimizing the computing expense. 

1 Introduction 
Cabin ventilation is crucial for maintaining thermal 
comfort and air quality for passengers and crew. Design 
of cabin ventilation must get the air-supply parameters 
appropriately determined. The conventional design 
adopts an iterative guess-and-correction procedure. The 
initial air-supply parameters are guessed, and the 
corresponding comfort and air quality performances are 
solved. If the design targets are not obtained, the air-
supply parameters must be gradually adjusted, until the 
design objectives are satisfied. For contrast, an inverse 
design starts from the design targets of cabin 
environmental performances, and the required air-supply 
parameters are provided in one-shot process. In recent 
years, inverse methods, such as the CFD-based genetic 
algorithm, CFD-based proper orthogonal decomposition 
(POD), and CFD-based adjoint method, have been 
proposed. 

The CFD-based genetic algorithm imitates the 
natural evolution to search for the optimal design from 
the randomly initial generations. With “crossing” and 
“mutation”, only superior cases with their environmental 
performances closer to the targets are selected to form 
the next generation. The genetic algorithm was proposed 
in the 1970s for major applications in biology, control, 
and artificial intelligence [1], and since then many 
researchers [2-3] sought to improve the algorithm. Xue 
et al. [4] and Zhai et al. [5] applied the method to 

inversely determine the air-supply parameters for cabin 
ventilation. The genetic algorithm is robust to provide 
the globally optimal solution. However, the method is 
resource-demanding and thus the design efficiency is 
low. 

The POD establishes a quick map of cabin 
environmental performance from various design 
parameters. By specifying the expected thermal comfort 
and air quality, the design parameters satisfying the 
targets are promptly determined. The POD first extracts 
the POD modes containing dominant thermo-flow 
features from some characteristic design cases. Then the 
thermo-flow distributions for remaining cases are solved 
by interpolating the coefficients of the POD modes. The 
POD was originally proposed to predict turbulent flows 
[6]. Recently, the POD was adopted to inversely design 
the air-supply opening size, air-discharge direction, and 
air temperature [7-8]. The POD-based method is 
efficient. However, the solution may not be very 
accurate due to the model reduction. 

The adjoint method searches for an optimal design 
from a specified initial case by means of a gradient-
based optimization. Different programs have been 
developed to implement the adjoint method in 
optimizing heat transfer [9], geometric shapes [10], and 
identifying pollutant sources [11]. The adjoint method 
has been utilized to inversely design air-supply 
parameters for cabin ventilation [12]. An optimal design 
can commonly be completed in fewer than 10 design 
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cycles if the initial design variables are provided within a 
reasonable range. However, only a local optimal solution 
can be provided by the method. 

Table 1. Pros and cons of the three inverse design methods. 

Method Pros Cons 
Genetic 

algorithm 
Globally optimal 
solution 

Low computing 
efficiency 

POD 
method 

High computing 
efficiency Not very accurate 

Adjoint 
method Accurate Local optimal solution 

None of the existent methods are satisfactory enough. 
Pros and cons of the three methods are summarized in 
Table 1. If some of the methods are integrated together, 
they may complement each other. For instance, Chen et 
al. [8] integrated the genetic algorithm and adjoint 
method, in which the genetic algorithm provided a rough 
design while the adjoint method tuned the design. Li et 
al. [13] integrated the POD and genetic algorithm. The 
POD was applied first to construct a number of discrete 
cases and then the genetic algorithm was used to search 
for an optimal design. The integration seems favourable, 
however, no systematic justification for the integration 
has been carried out. 

This study proposed an integration of the three 
methods for inverse design of the air-supply parameters 
in an aircraft cabin. The genetic algorithm was adopted 
first to circumscribe ranges of the air-supply parameters. 
Then POD was used to further narrow the ranges and 
estimate the optimal design. The adjoint method was 
finally utilized to tune the design. The conducted designs 
in each stage were compared, and the justification for 
method integration was analyzed. 

2 Methodology 

The integrated design includes three stages: an initial 
design with the CFD-based genetic algorithm, a basic 
design with the CFD-based POD method, and a fine 
design with the CFD-based adjoint method. The 
principles of each stage are outlined below, followed by 
a procedure for method integration. 

2.1 Initial design 

The initial design with the genetic algorithm starts with 
numbers of cases with different initial air-supply 
parameters. These cases are called the first generation of 
design. The environmental performances of the cases are 
computed to select superior cases with the performance 
closer to the target. With “crossing” or “mutating” 
among each other, the next generation is produced. The 
process is cycled until either a maximum number of 
generations or the set design targets are reached. Then 
the optimization is terminated, and the circumscribed 
range of parametric design is outputted.  

Note that the objective of the initial design is to 
circumscribe the parametric range(s) containing the 
globally optimal design, rather than to produce the 

globally optimal design directly. The genetic algorithm 
can simply eliminate those designs that are too far away 
from the target and just provide the circumscribed 
parametric ranges for subsequent stages. Consequently, 
the computing burden of the genetic algorithm is greatly 
reduced. 

2.2 Basic design 

In the basic design, POD is adopted to further narrow the 
parametric ranges provided by the genetic algorithm. 
The POD modes are first extracted from the 
characteristic cases solved by full CFD simulations as: 

                                  
1=

=
vN

j
j

j
aφ f   (1) 

where φ is the POD mode, Nv is the number of 
representative cases, the superscript j represents the jth f 
in the ensemble of the thermo-flow data, aj is a 
coefficient that can be solved from the eigenvector of the 
averaged autocorrelation matrix of the data ensemble. 
The subscript j is the index of the element in the vector a. 
The coefficients of the corresponding POD modes can 
then be solved as: 

                                  ( , )= k
kc f φ   (2) 

where (,) is the inner product operation, superscript k 
represents the kth POD mode, and subscript k represents 
the kth element of the vector c. To obtain the thermo-flow 
data for the rest air-supply parameters that are not used 
to extract the POD modes, an interpolation to the 
coefficients, such as by the piecewise cubic Hermite 
scheme, can be used. Then the thermo-flow fields in the 
parametric range can be constructed as: 

                                  
1=

=Rf φ k

K

k
k

c   (3) 

where fR is the reconstructed thermo-flow fields, K is the 
number of POD modes required. Once all of the thermo-
flow fields in the circumscribled parametric ranges are 
obtained, the cabin environmental performances can be 
easily solved. The designs satisfying each design target 
can be determined, and the ranges of air-supply 
parameters satisfying all of the design targets can also be 
obtained by intersecting the designs for each target. 

If the characteristic cases are sufficiently 
representative, the calculated environmental 
performances from the POD construction can be close to 
those from full CFD-simulated cases. However, because 
of model reduction, the solutions provided by POD may 
not be sufficiently accurate, and thus require some other 
methods for fine tuning. 

2.3 Fine design 

The optimal design corresponding to each design target 
obtained by POD is supplied to the adjoint method as the 
initial case for fine tuning. The adjoint method first 
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solves the Navier-Stokes equations to obtain the 
environmental performance for the current design. Then 
the adjoint equations of the Navier-Stokes equations are 
solved to search the direction for gradually minimizing 
the objective function O. The adjoint equations are 
derived from the gradient to minimize the objective 
function O for an air-supply parameter . The objective 
function is converted into an unconstrained format as: 

               ( ) ( ) ( , , , )


   = +  a a aL O p T daU N   (4) 

where pa is adjoint pressure, Ua is adjoint velocity, Ta is 
adjoint temperature, a is adjoint scalar,  is the solution 
domain, and N is a vector that represents the N-S 
equations. When N = 0, L is equal to O in Eq. (4). 
Therefore, finding  that minimizes O becomes 
finding  that minimizes L. Due to the nonlinearity of 
objective function, the gradient to minimize L has to be 
solved for several times to find the optimal solution. In a 
design cycle both the Navier-Stokes and adjoint 
equations are solved once. 

Because the adjoint method employs full CFD 
simulation, there is no error from model reduction as the 
POD method. If the optimal design from the POD is not 
far from the globally optimal solution, the final accurate 
solution will be quickly obtained by the adjoint method. 
More details of the above three methods can be found in 
[8]. 

2.4 Procedure for integrating three methods 

Fig. 1 illustrates the procedure for integrating the three 
methods. To start design process, the design targets were 
set and the parametric ranges of the design variables 
were defined. In the initial design, a generation within 
the given initial parametric ranges was created. Next, 
CFD was run to compute the value of the objective 
function for each case, and the genetic operations were 
applied to create the next generation until acceptable 
parametric ranges that were narrower than the initial 
ones were circumscribed. In the second stage, POD-
based basic design was conducted. Representative cases 
were selected within the circumscribed ranges provided 
by the genetic algorithm. POD was then applied on the 
thermo-flow data from full CFD simulations to extract 
the POD modes. The ranges of design variables that 
satisfied all of the design targets were identified. The 
globally optimal design in perspective of each design 
target was also identified. Finally, the adjoint-based fine 
design was carried out to tune the optimal parametric 
sets. 

 
Fig. 1. Solution procedure for integrating three methods. 

3 Demonstration case 

To evaluate the proposed method, the air-supply 
parameters for a five-row aircraft cabin, as shown in Fig. 
2, were inversely designed. To reduce the computational 
load, only half of the five-row cabin was modelled with 
symmetric boundary conditions for the middle sectional 
plane. Such simplifications would have little effect on 
the flow pattern when boundary conditions and 
geometric models are symmetric on both sides. However, 
factors such as the asymmetrical air supply and staff 
activities which may cause the asymmetrical flow 
patterns in the cabin were not considered. A total of 15 
passengers were seated in the aircraft cabin. The air-
supply inlet of the cabin was on the side wall near the 
ceiling, while the exhaust outlet was near the floor. The 
passengers’ skin temperature was set to 30.3 oC, and the 
cabin walls were among 21 to 23 oC. The air-supply flow 
rate was set as 9.4 L/s per person, according to the 
recommendation provided by ASHRAE Standard 161-
2013 [14]. 

Start  

Choose the design criteria, set design 
variables, and define parametric ranges 

End  

Conduct POD on representative cases in 
the circumscribed ranges to narrow design 
parameter ranges, and estimate the optimal 

design of each criterion (Basic design) 

Output the globally optimal 
design 

Apply the adjoint method to tune the parametric 
sets until the globally optimal design is 

achieved (Fine design) 

Run full CFD and GenOpt until acceptable 
ranges narrower than the initial ones are 

obtained (Initial design) 
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Fig. 2. Geometric model of a five-row aircraft cabin for inverse 
design of the air-supply parameters. 

The air-supply parameters, including the air-supply 
opening size, air-supply temperature, and air-supply 
direction, were inversely determined. The design targets 
were the averaged air speed less than 0.2 m/s in the head 
regions and less than 0.35 m/s in the ankle regions; the 
area-averaged absolute value of the cabin predicted 
mean vote (|PMVc|ave) in the surrounding surfaces at a 
distance of 0.1 m from the human body less than 0.3; 
and the area-averaged mean age of air in the head 
regions less than 120 seconds. Here, |PMVc|ave means the 
average of the absolute PMVc. The absolute operation 
was conducted first to calculate the deviation from the 
neutral PMVc for each passenger, followed by the 
average operation to evaluate the thermal comfort for 
passengers in five rows. The PMVc [15] was specially 
proposed for aircraft cabin with the reduced air pressure 
effect accounted for the eastern Asian passengers. In 
addition, the designs to obtain the minimum |PMVc|ave 
and the minimum area-averaged mean age of air, 
respectively, were also provided in the study. 

The initial parametric ranges when starting the design 
were set according to experience as: 1 to 3 cm for the 
air-supply opening size, -45o to 45o for the air-supply 
direction, and 16 oC to 26 oC for the air-supply 
temperature. The air-supply direction was defined with 
respect to the horizontal, and it was positive if the 
direction was downward. 

To solve for the thermo-flow fields under different 
air-supply parameters, the geometry as shown in Fig. 2, 
was created. Approximately 2.5 million combined 
tetrahedral and hexahedral grid cells were generated. The 
adopted grids were fine enough to reach the grid 
independence. The Fluent software was used to solve the 
thermos-flow. The RNG k- model was utilized to 
resolve the flow turbulence. To well capture thermal 
buoyancy, the Boussinesq approximation was adopted to 
represent the varying density with temperature. In 
addition, the pressure staggering option (PRESTO) 
scheme was selected when discretizing the pressure term, 
while all the rest terms were discretized with the upwind 
scheme. The semi-implicit method for pressure linked 
equations (SIMPLE) scheme was used for pressure and 
velocity coupling. The convergence was judged to be 
satisfactory if the relative residual was small enough and 
there was no meaningful change in temperature, velocity, 

and mean age of air at a typical monitoring point with 
numerical iterations. 

4 Results 

4.1 Typical thermo-flow distributions 

Fig. 3 shows the velocity, temperature, PMVc and mean 
age of air distributions for a case with 3.0 cm as the air-
supply opening size, 20.0o as the air-supply direction, 
and 26.0 oC as the air-supply temperature. It can be seen 
that although the boundary conditions were identical for 
all rows, slight differences in the solved PMVc and mean 
age of air among different rows existed. The difference 
was attributed to flow turbulence and instability inside 
the aircraft cabin. 

4.2 Optimal air-supply parameters 

The CFD-based genetic algorithm started the initial 
design from eight random cases within the initial 
parametric ranges. These cases formed the first 
generation of the design toward the circumscribed 
parametric ranges. In the initial design stage, a total of 
10 generations for crossing and mutation had been 
implemented, constituting 58 cases for full CFD 
simulation. The smaller rectangular frame in Fig. 4 
shows the circumscribed parametric ranges by the 
genetic algorithm; while the larger frame surrounding 
the whole domain in the figure represents the initial 
parametric ranges provided by users. The genetic 
algorithm circumscribed the air-supply parameters into 
1.0 to 3.0 cm, 5.0 to 34.0o, and 23.0 to 26.0 oC. The 
removed parametric ranges were those beyond the 
design targets. 

 

Fig. 3. Thermo-flow and environmental performance for a case 
with an opening size of 3.0 cm, an air-supply direction of 20.0o, 
and an air-supply temperature of 26.0 oC: (a) air velocity 
vectors in one section across the passengers in the third row; (b) 
air temperatures in the same section; (c) PMVc on the 

(b) (a) 

(d) (c) 

T (oC) 

PMVc 
Age of air 

(s) 

Side wall 
Inlet 

Seats 

Exhaust outlet Passengers 
Floor 

Symmetry 

Central ceiling 
Side ceiling 
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surrounding regions at a distance of 0.1 m from the passengers; 
(d) mean age of air in the head zones. 

 

Fig. 4. Comparison of the initially defined parametric ranges 
(the larger frame surrounding the whole domain), the ranges 
circumscribed by the genetic algorithm (the smaller rectangular 
frame), the narrowed ranges determined by POD (the light blue, 
irregularly shaped regions), and the cases with minimum 
|PMVc|ave (the upper yellow dot) and minimum mean age of air 
(the lower red dot) according to POD. 

The circumscribed ranges by the genetic algorithm 
were provided to POD to extract the POD modes. 
Totally 45 cases were selected as representative cases, 
with discrete air-supply opening sizes of 1.0 cm, 1.5 cm, 
2.0 cm, 2.5 cm, and 3.0 cm, discrete air-supply 
directions of 5.0o, 20.0o, and 34.0o, and discrete air-
supply temperatures of 23.0 oC, 24.5 oC, and 26.0 oC. 
The light blue region in Fig. 4 is the optimized ranges 
that satisfied all of the four design targets according to 
the POD design. Some parameters were removed in this 
stage since they violated one or more design targets. 
Moreover, the air-supply parameters corresponding to 
the minimum |PMVc|ave and the minimum area-averaged 
mean age of air were outputted, as shown by the yellow 
and red dots, respectively, in Fig. 4. 

Table 2. Optimal designs obtained by the integrated method. 

Design criteria 
Case with 
minimum 
|PMVc|ave 

Case with 
minimum 

Ageave 
Opening size 2.7 cm 3.0 cm 

Direction 6.5o 32.2o 
Temperature 25.0 oC 26.0 oC 

Environmental 
performances |PMVc|ave=0.09 Ageave=91.1 s 

Finally, the above two optimal designs were inputted 
to the adjoint method for fine tuning. After five design 
cycles, i.e., five cases, the design with the minimum 
|PMVc|ave was obtained in the third cycle. The 
corresponding |PMVc|ave was 0.09. The minimum mean 
age of air was 91.1 s, also attained in the third design 
cycles. Table 2 summarizes the optimal air-supply 
parameters in terms of |PMVc|ave and Ageave. It shows 
that the air-supply parameters to reach the minimum 
|PMVc|ave and Ageave are different. The users have to 

select their prefered design criterion to optimize a 
specific design. 

4.3 Justification of the method integration 

Table 3 lists the air-supply parameters to reach the 
minimum |PMVc|ave in each stage. In the initial design, 
the minimum |PMVc|ave for all of the 58 cases resolved 
by the genetic algorithm was 0.29. The minimum 
|PMVc|ave was reduced into 0.09 by the POD. The 
minimum |PMVc|ave obtained by the genetic algorithm 
was greater than that provided by the POD. This shows 
that the POD method provided a better design than the 
genetic algorithm. The ultimate fine design by the 
adjoint method produced the same |PMVc|ave as the POD. 
However, the corresponding air-supply parameters 
differed slightly. The POD has provided a relatively 
good estimation of the optimal design for the adjoint 
method as the initial parameters. 

Table 4 shows the minimum averaged mean age of 
air in the three stages. The Ageave was gradually reduced 
from 110.5 s in the initial design, to 93.0 s in the basic 
design, and finally to 91.1 s in the fine design. The 
integrated method improved the design stage by stage. 
The integration of the three methods was indeed 
necessary and valid. 

Table 3. Cases with the minimum |PMVc|ave obtained in each 
stage. 

Design stage Initial 
design 

Basic 
design 

Fine 
design 

Opening size 1.0 cm 2.8 cm 2.7 cm 

Direction 21.8o 10.0o 6.5o 

Temperature 23.0 oC 24.8 oC 25.0 oC 
|PMVc|ave 0.29 0.09 0.09 

Table 4. Cases with the minimum averaged mean age of air 
obtained in each stage. 

Design stage Initial 
design 

Basic 
design 

Fine 
design 

Opening size 1.0 cm 3.0 cm 3.0 cm 

Direction 21.8o 34.0o 32.2o 
Temperature 23.0 oC 26.0 oC 26.0 oC 

Ageave 110.5 s 93.0 s 91.1 s 

Regarding to the computing time, 58 full CFD cases 
were executed by the genetic algorithm, 45 cases by 
POD, and five cases by the adjoint method to optimize 
the design with the minimum |PMVc|ave. Additional five 
cases were required to optimize the design with the 
minimum averaged mean age of air. Because the adjoint 
method solved both the Navier-Stokes equations and the 
adjoint equations in each design cycle, the computing 
load of an optimization case in the adjoint method was 
double of that for a full CFD-alone case. So a total of 
123 equivalent CFD cases were required for the whole 
design to obtain the minimum |PMVc|ave and the 
minimum mean age of air. However, if a user applied the 

Minimum mean age 
of air by POD 

Te
m

pe
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re

 (o C
)

Narrowed ranges 
 by POD 

Minimum |PMVc|ave  
by POD 

Circumscribed ranges 
 by genetic algorithm 
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genetic algorithm alone to find the comparative design, 
at least 200 full CFD cases were required. Therefore, the 
integrated method reduced the computing load by 
approximately 50% as compared with the CFD-based 
genetic algorithm method alone. Moreover, such a 
globally optimal design is extremely hard to be 
accomplished by the POD- or adjoint-based method 
alone. 

5 Discussion 

In the integrated design, the genetic algorithm solved the 
largest number of full CFD cases, and thus has a large 
potential to improve. Because the POD required only 
parametric ranges as the input, the genetic algortihm did 
not have to solve redundant cases. For example, some 
parametric sets that clearly produced poor designs could 
be eliminated early in the process. The bottleneck in 
accelerating the POD-based design was also the number 
of full CFD simulations to extract the POD modes. The 
POD used uniformly distributed parameters as 
characteristic cases, which might not be ideal. Intelligent 
schemes are required to identify representative 
characteristic cases, while the missing cases are 
reconstructed by interpolation. The integrated design 
was carried out sequentially stage by stage. The POD 
could omit some cases for full CFD simulation, if those 
cases were presented in the genetic algorithm. Likewise, 
the adjoint method could also skip cases resolved by the 
genetic algorithm and POD. In addition, the adjoint 
method utilized the steepest descent gradient for 
optimization. A superior strategy that might further 
speed up the search of the optimal design awaits to 
develop. 

In this study, an air-supply temperature of 25 oC was 
obtained by the integrated design for the optimal 
|PMVc|ave. Because heat sources such as electronic 
equipments and solar radiation were not considered in 
our investigation, the obtained air-supply temperatures 
may be higher than that in realistic flights. The cabin 
surface temperatures were fixed in the range from 21 to 
23 oC, which also made significant heat loss out of the 
cabin and thus required warm air supply to keep comfort. 
Further research may consider heat sources inside the 
cabin and set more practical thermal boundary 
conditions for cabin surfaces. 

6 Conclusions 

This study proposed a strategy to integrate three different 
methods in cascades for inverse design of the air-supply 
parameters in an aircraft cabin. The air-supply opening 
sizes, directions, and temperatures to obtain the 
minimum |PMVc|ave and the minium mean age of air 
were resolved. The results showed that the genetic 
algorithm was able to circumscribe parametric ranges for 
further design by the POD. The POD could estimate a 
good optimal design for each design criterion to the 
adjoint method. The integrated method improved the 
design stage by stage. The method integration was thus 
necessary and valid. Moreover, if the genetic algorithm 

alone was utilized to provide a comparative design as the 
integrated method, it would require at least double 
computing expense of the integrated strategy. 
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