38,851 research outputs found

    Wind-driven Accretion in Protoplanetary Disks. I: Suppression of the Magnetorotational Instability and Launching of the Magnetocentrifugal Wind

    Full text link
    We perform local, vertically stratified shearing-box MHD simulations of protoplanetary disks (PPDs) at a fiducial radius of 1 AU that take into account the effects of both Ohmic resistivity and ambipolar diffusion (AD). The magnetic diffusion coefficients are evaluated self-consistently from a look-up table based on equilibrium chemistry. We first show that the inclusion of AD dramatically changes the conventional picture of layered accretion. Without net vertical magnetic field, the system evolves into a toroidal field dominated configuration with extremely weak turbulence in the far-UV ionization layer that is far too inefficient to drive rapid accretion. In the presence of a weak net vertical field (plasma beta~10^5 at midplane), we find that the MRI is completely suppressed, resulting in a fully laminar flow throughout the vertical extent of the disk. A strong magnetocentrifugal wind is launched that efficiently carries away disk angular momentum and easily accounts for the observed accretion rate in PPDs. Moreover, under a physical disk wind geometry, all the accretion flow proceeds through a strong current layer with thickness of ~0.3H that is offset from disk midplane with radial velocity of up to 0.4 times the sound speed. Both Ohmic resistivity and AD are essential for the suppression of the MRI and wind launching. The efficiency of wind transport increases with increasing net vertical magnetic flux and the penetration depth of the FUV ionization. Our laminar wind solution has important implications on planet formation and global evolution of PPDs.Comment: 23 pages, 13 figures, accepted to Ap

    Dynamics of Solids in the Midplane of Protoplanetary Disks: Implications for Planetesimal Formation

    Full text link
    (Abridged) We present local 2D and 3D hybrid numerical simulations of particles and gas in the midplane of protoplanetary disks (PPDs) using the Athena code. The particles are coupled to gas aerodynamically, with particle-to-gas feedback included. Magnetorotational turbulence is ignored as an approximation for the dead zone of PPDs, and we ignore particle self-gravity to study the precursor of planetesimal formation. Our simulations include a wide size distribution of particles, ranging from strongly coupled particles with dimensionless stopping time tau_s=Omega t_stop=1e-4 to marginally coupled ones with tau_s=1 (where Omega is the orbital frequency, t_stop is the particle friction time), and a wide range of solid abundances. Our main results are: 1. Particles with tau_s>=0.01 actively participate in the streaming instability, generate turbulence and maintain the height of the particle layer before Kelvin-Helmholtz instability is triggered. 2. Strong particle clumping as a consequence of the streaming instability occurs when a substantial fraction of the solids are large (tau_s>=0.01) and when height-integrated solid to gas mass ratio Z is super-solar. 3. The radial drift velocity is reduced relative to the conventional Nakagawa-Sekiya-Hayashi (NSH) model, especially at high Z. We derive a generalized NSH equilibrium solution for multiple particle species which fits our results very well. 4. Collision velocity between particles with tau_s>=0.01 is dominated by differential radial drift, and is strongly reduced at larger Z. 5. There exist two positive feedback loops with respect to the enrichment of local disk solid abundance and grain growth. All these effects promote planetesimal formation.Comment: 25 pages (emulate apj), accepted to Ap

    Can the ANITA anomalous events be due to new physics?

    Full text link
    The ANITA collaboration has observed two ultra-high-energy upgoing air shower events that cannot originate from Standard Model neutrinos that have traversed the Earth. Several beyond-the-standard-model physics scenarios have been proposed as explanations for these events. In this paper we present some general arguments making it challenging for new physics to explain the events. One exceptional class of models that could work is pointed out, in which metastable dark matter decays to a highly boosted lighter dark matter particle, that can interact in the Earth to produce the observed events.Comment: 12 pages, 5 figure
    • …
    corecore