12,715 research outputs found

    EXIT-charts-aided hybrid multiuser detector for multicarrier interleave-division multiple access

    Get PDF
    A generically applicable hybrid multiuser detector (MUD) concept is proposed by appropriately activating different MUDs in consecutive turbo iterations based on the mutual information (MI) gain. It is demonstrated that the proposed hybrid MUD is capable of approaching the optimal Bayesian MUD's performance despite its reduced complexity, which is at a modestly increased complexity in comparison with that of the suboptimum soft interference cancellation (SoIC) MU

    Channel coded iterative center-shifting K-best sphere detection for rank-deficient systems

    No full text
    Based on an EXtrinsic Information Transfer (EXIT) chart assisted receiver design, a low-complexity near-Maximum A Posteriori (MAP) detector is constructed for high-throughput MIMO systems. A high throughput is achieved by invoking high-order modulation schemes and/or multiple transmit antennas, while employing a novel sphere detector (SD) termed as a center-shifting SD scheme, which updates the SD’s search center during its consecutive iterations with the aid of channel decoder. Two low-complexity iterative center-shifting SD aided receiver architectures are investigated, namely the direct-hard-decision centershifting (DHDC) and the direct-soft-decision center-shifting (DSDC) schemes. Both of them are capable of attaining a considerable memory and complexity reduction over the conventional SD-aided iterative benchmark receiver. For example, the DSDC scheme reduces the candidate-list-generation-related and extrinsic-LLR-calculation related complexity by a factor of 3.5 and 16, respectively. As a further benefit, the associated memory requirements were also reduced by a factor of 16

    Single-input and single-output (SISO) controller reduction based on the L1L_1-norm

    No full text
    This paper proposes a new method to solve the controller-reduction problem based on the L1L_1-norm. This method uses a reduced-order closed-loop system to deduce reduced-order controllers. The problem of obtaining the required lower-order closed-loop system was formulated as an L1L_1-norm optimization, and the conditions were provided for guaranteeing the internal stability and the existence of lower-order controllers from the obtained reduced-order closed-loop system. In addition, the particle swarm optimization and sequence linear programming were adopted to solve the resultant L1L_1-norm optimization. Two numerical examples demonstrated the effectiveness of the proposed method

    Hybrid Transceiver Optimization for Multi-Hop Communications

    Full text link
    Multi-hop communication with the aid of large-scale antenna arrays will play a vital role in future emergence communication systems. In this paper, we investigate amplify-and-forward based and multiple-input multiple-output assisted multi-hop communication, in which all nodes employ hybrid transceivers. Moreover, channel errors are taken into account in our hybrid transceiver design. Based on the matrix-monotonic optimization framework, the optimal structures of the robust hybrid transceivers are derived. By utilizing these optimal structures, the optimizations of analog transceivers and digital transceivers can be separated without loss of optimality. This fact greatly simplifies the joint optimization of analog and digital transceivers. Since the optimization of analog transceivers under unit-modulus constraints is non-convex, a projection type algorithm is proposed for analog transceiver optimization to overcome this difficulty. Based on the derived analog transceivers, the optimal digital transceivers can then be derived using matrix-monotonic optimization. Numeral results obtained demonstrate the performance advantages of the proposed hybrid transceiver designs over other existing solutions.Comment: 32 pages, 6 figures. This manuscript has been submitted to IEEE Journal on Selected Areas in Communications (special issue on Multiple Antenna Technologies for Beyond 5G

    CFD-FEM simulation of water entry of aluminium flat stiffened plate structure considering the effects of hydroelasticity

    Get PDF
    In this paper, the slamming loads and structural response of an aluminium flat stiffened-plate structure during calm water entry considering the hydroelasticity effects are studied by a partitioned CFD-FEM two-way coupled method. The target structure is simplified as one segment of an idealized ship grillage structure, comprising flat plate and stiffeners. The typical numerical results are analyzed such as vertical displacement, velocity, acceleration, impact loads, and structural stress of the flexible flat bottom grillage structure considering the hydroelasticity effect and air cushion effect in different free fall height conditions. Drop test results of the same structure and other existing numerical simulation data by both coupled and uncoupled solutions in the literature are used for comparison with the present numerical simulation results. This study provides a practical means to simulate the slamming behaviour and structural response of ship structures, which is useful for predicting ship hull stiffened panel loads and related structural design

    Stochastic stability and stabilization of discrete-time singular Markovian jump systems with partially unknown transition probabilities

    Get PDF
    This paper considers the stochastic stability and stabilization of discrete-time singular Markovian jump systems with partially unknown transition probabilities. Firstly, a set of necessary and sufficient conditions for the stochastic stability is proposed in terms of LMIs, then a set of sufficient conditions is proposed for the design of a state feedback controller to guarantee that the corresponding closed-loop systems are regular, causal, and stochastically stable by employing the LMI technique. Finally, some examples are provided to demonstrate the effectiveness of the proposed approaches
    corecore