261 research outputs found

    Cyclic Durability of a Solid Oxide Fe-Air Redox Battery Operated at 650°C

    Get PDF
    The recently developed rechargeable solid oxide metal-air redox battery has shown a great potential for applications in mid- to large-scale stationary energy storage. Cyclic durability is one of the most important requirements for stationary energy storage. In this study, we report the cyclic durability of a solid oxide Fe-air redox battery operated at 650°C. The battery was continuously cycled 100 times under a current density of 50 mA/cm2 with rather flat performance, producing an average specific energy of 760 Wh/kg-Fe at a round-trip efficiency of 55.5%. The post-test examination indicated that the performance losses could arise from the fuel-electrode of the battery

    Cyclic Durability of a Solid Oxide Fe-Air Redox Battery Operated at 650°C

    Get PDF
    The recently developed rechargeable solid oxide metal-air redox battery has shown a great potential for applications in mid- to large-scale stationary energy storage. Cyclic durability is one of the most important requirements for stationary energy storage. In this study, we report the cyclic durability of a solid oxide Fe-air redox battery operated at 650â—¦C. The battery was continuously cycled 100 times under a current density of 50 mA/cm2 with rather flat performance, producing an average specific energy of 760 Wh/kg-Fe at a round-trip efficiency of 55.5%. The post-test examination indicated that the performance losses could arise from the fuel-electrode of the battery

    A New Solid Oxide Molybdenum–Air Redox Battery

    Get PDF
    A new type of rechargeable molybdenum–air battery based on the technologies of reversible solid oxide fuel cells and chemical looping is reported in this study. The reversible solid oxide fuel cell serves as the electrical unit to realize the charging and discharging cycles while a pair of Mo/MoO2 redox couple integrated with the reversible solid oxide fuel cell stores electrical energy via an H2–H2O oxygen shuttle. The specific charge of the new battery reaches 1117 A h per kg-Mo at 550°C, which is 45% higher than the non-rechargeable Mo–air battery. The corresponding discharge specific energy is 974 W h per kg-Mo with a round trip efficiency of 61.7%. In addition, the new Mo–air redox battery also exhibits 13.9% and 24.5% higher charge density (A h L1 ) and energy density (W h L1 ) than the state-of-the-art solid oxide Fe-air redox battery, respectively

    A Novel Intermediate-Temperature All Ceramic Iron–Air Redox Battery: The Effect of Current Density and Cycle Duration

    Get PDF
    We here report the energy storage characteristics of a new all ceramic iron–air redox battery comprising of a reversible solid oxide fuel cell as the charger/discharger and a Fe–FeOx redox couple as the chemical storage bed. The effects of current density and cycle duration on specific energy and round trip efficiency of the new battery have been systematically studied at 650°C and 550°C. The results explicitly show that current density is the most influential variable on the performance, signifying the importance of improving electrochemical performance of the reversible solid oxide fuel cell

    Energy Storage Characteristics of a New Rechargeable Solid Oxide Iron-Air Battery

    Get PDF
    Cost effective and large scale energy storage is critical to renewable energy integration and smart-grid energy infrastructure. Rechargeable batteries have great potential to become a class of cost effective technology suited for large scale energy storage. In this paper, we report the energy storage characteristics of a newly developed rechargeable solid oxide iron–air battery. Investigations of the battery’s performance under various current densities and cycle durations show that iron utilization plays a determining role in storage capacity and round-trip efficiency. Further studies of the battery\u27s cycle life reveal a unique charge-cycle originated degradation mechanism that can be interpreted by a combined vapor-phase transport and electrochemical condensation model. Overall, the energy capacity of the new solid oxide iron–air storage battery should be properly balanced with the round-trip efficiency at optimized iron utilization

    A High Energy Density All Solid-State Tungsten-Air Battery

    Get PDF
    An all solid-state tungsten–air battery using solid oxide–ion electrolyte is demonstrated as a new chemistry for advanced energy storage. The unique design of separated energy storage from the electrodes allows for free volume expansion–contraction during electrical cycles and new metal–air chemistry to be explored conveniently

    Optimal treatment determination on the basis of haematoma volume and intra-cerebral haemorrhage score in patients with hypertensive putaminal haemorrhages: a retrospective analysis of 310 patients

    Get PDF
    BACKGROUND: Hypertensive putaminal haemorrhage comprises major part of intra-cerebral haemorrhages, with particularly high morbidity and mortality. However, the optimal treatments for these individuals remain controversial. METHODS: From June 2010 to August 2013, patients with hypertensive putaminal haemorrhages were treated in the Department of Neurosurgery, West China Hospital. Information regarding the age, signs of cerebral herniation, haematoma volume, intra-ventricular haemorrhage, intra-cerebral haemorrhage score and the treatments of each patient were analyzed retrospectively. The outcome was evaluated by the 30-day mortality rate. RESULTS: The 30-day mortality rate of the patients with haematomas volume greater than or equal to 30 ml and intra-cerebral haemorrhage scores of 1 or 2 was decreased in the surgical group compared with those in the conservative group (1.92% VS. 21.40%, OR = 0.072, p = 0.028; 15.40% VS. 33.3%, OR = 0.365, p = 0.248, respectively). The mortality rate of the patients with signs of cerebral herniation was not significantly different between the surgical and conservative groups (83.30% VS. 100%; p = 0.529). The intra-cerebral haemorrhage score was significantly associated with the 30-day mortality rate of patients with intra-cerebral haemorrhages (r = -0.798, p < 0.001). CONCLUSION: Patients with basal ganglia haematomas volume greater than or equal to 30 ml and intra-cerebral haemorrhage scores of 1 or 2 could benefit from the surgical removal of haematomas. The intra-cerebral haemorrhage score can accurately predict the 30-day mortality rate of patients with hypertensive putaminal haemorrhages

    Topical Digitoxigenin for Wound Healing: A Feasibility Study

    Get PDF
    (1) Background: Cardiotonic steroids have been found to stimulate collagen synthesis and might be potential wound healing therapeutics. The objective of this study was to evaluate the feasibility of digitoxigenin and its topical formulation for wound healing; (2) Methods: In the in vitro study, the human dermal fibroblast cells were treated with digitoxigenin and collagen synthesis was assessed. In the in vivo study, digitoxigenin was applied to excisional full-thickness wounds in rats immediately after wounding and remained for three days, and wound open was evaluated over 10 days. A digitoxigenin formulation for topical administration was prepared, and the in vitro release and in vivo wound healing effect were investigated; (3) Results: The expression of procollagen in human dermal fibroblast was significantly increased with the exposure to 0.1 nM digitoxigenin. Topical application of digitoxigenin in olive oil or alginate solution for three days significantly decreased the wound open in rats. Similarly, topical administration of the developed digitoxigenin formulation for three days also significantly increased wound healing. No wound healing effects were observed at days 7 and 10 after wounding when digitoxigenin was not applied; and, (4) Conclusions: It was possible to deliver digitoxigenin using the developed formulation. However, the wound healing effect of digitoxigenin and its mechanisms need to be further investigated in future studies

    Informed anytime fast marching tree for asymptotically-optimal motion planning

    Get PDF
    In many applications, it is necessary for motion planning planners to get high-quality solutions in high-dimensional complex problems. In this paper, we propose an anytime asymptotically-optimal sampling-based algorithm, namely Informed Anytime Fast Marching Tree (IAFMT*), designed for solving motion planning problems. Employing a hybrid incremental search and a dynamic optimal search, the IAFMT* fast finds a feasible solution, if time permits, it can efficiently improve the solution toward the optimal solution. This paper also presents the theoretical analysis of probabilistic completeness, asymptotic optimality, and computational complexity on the proposed algorithm. Its ability to converge to a high-quality solution with the efficiency, stability, and self-adaptability has been tested by challenging simulations and a humanoid mobile robot
    • …
    corecore