19 research outputs found

    Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review

    Get PDF
    Aqueous zinc ion batteries (ZIBs) are regarded as one of the most ideally suited candidates for large-scale energy storage applications owning to their obvious advantages, that is, low cost, high safety, high ionic conductivity, abundant raw material resources, and eco-friendliness. Much effort has been devoted to the exploration of cathode materials design, cathode storage mechanisms, anode protection as well as failure mechanisms, while inadequate attentions are paid on the performance enhancement through modifying the electrolyte salts and additives. Herein, to fulfill a comprehensive aqueous ZIBs research database, a range of recently published electrolyte salts and additives research is reviewed and discussed. Furthermore, the remaining challenges and future directions of electrolytes in aqueous ZIBs are also suggested, which can provide insights to push ZIBs’ commercialization

    Circular RNA circGPRC5A(e2) facilitates gastric cancer progression and metastasis via modulating miR‐665/LASP1 and activating PI3K/AKT pathway

    No full text
    Abstract Gastric cancer (GC) is one of the most commonly diagnosed malignancies worldwide. Compelling evidence indicates that circular RNA (circRNA) played critical roles in multiple cancers. However, the role and mechanisms of circRNAs in GC remains unclear. Here we first identified a notably overexpressed circular RNA hsa_circ_0025506 in GC by human circRNA microarray, designated as circGPRC5A(e2). Next, we found circGPRC5A(e2) was overexpressed in GC cell lines and clinical samples as well. Then, we confirmed that circGPRC5A(e2) was primarily located in the cytoplasm of GC cells and colocation phenomenon was observed with miR‐665 via fluorescence in situ hybridization. Functionally, Cell Counting Kit‐8, 5‐Ethynyl‐2â€Č‐deoxyuridine, clone formation assay, Transwell invasion assay, wound‐healing assay, and animal experiments showed that circGPRC5A(e2) promoted GC proliferation, migration, and invasion in vitro, and tumorigenesis and metastasis in vivo. Mechanistically, we showed that circGPRC5A(e2) could serve as miR‐665 sponges and facilitate GC growth and metastasis via modulating miR‐665/LIM and SH3 protein 1 (LASP1) axis and activating phosphatidylinositol 3‐kinase/AKT pathway. Taken together, this study revealed that circGPRC5A(e2) functioned as an oncogene in GC. The circGPRC5A(e2)/miR‐665/LASP1 axis revealed by current research might provide novel biomarkers and promising therapeutic targets for GC

    The refractive and diffractive contributions to GPS signal scintillation at high latitudes during the geomagnetic storm on 7-8 September 2017

    No full text
    Different indices have been used to reflect, or monitor the ionospheric scintillation, e.g. the detrended carrier phase, σφ, S4, the rate of change of the vertical total electron content index (vROTI), as well as the ionosphere‐free linear combination (IFLC) of two carrier phases. However, few studies have been performed to investigate the refractive and diffractive contributions to these indices, especially during geomagnetic storms. In this study, we analyze the high-resolution (50 Hz) phase and amplitude measurements from four high-latitude stations in Svalbard, Norway during the geomagnetic storm on 7–8 September 2017. Our results show that at high latitudes, the high-pass filter with a standard cutoff frequency of 0.1 Hz sometimes cannot effectively remove the refraction-driven phase variations, especially during the geomagnetic storm, leading to a remaining refraction contribution to the detrended carrier phase and σφ when scintillation happens. In the meanwhile, as vROTI is sensitive to the TEC gradients, regardless of small- or large-scale ionospheric structures, both refraction and diffraction effects can cause visible fluctuations of vROTI. For most of the scintillation events, the phase indices (including detrended carrier phase, σφ, and vROTI), IFLC, and S4 show consistent fluctuations, indicating that diffraction usually occurs simultaneously with refraction during scintillation. One interesting feature is that although the IFLC and S4 are thought to be both related to the diffraction effect, they do not always show simultaneous correspondence during scintillations. The IFLC is enhanced during the geomagnetic storm, while such a feature is not seen in S4. We suggest that the enhanced IFLC during the geomagnetic storm is caused by the increased high-frequency phase power, which should be related to the enhanced density of small-scale irregularities during storm periods.publishedVersio

    Trichalcogenasupersumanenes and its concave-convex supramolecular assembly with fullerenes

    No full text
    Abstract Synthesis of buckybowls have stayed highly challenging due to the large structural strain caused by curved π surface. In this paper, we report the synthesis and properties of two trichalcogenasupersumanenes which three chalcogen (sulfur or selenium) atoms and three methylene groups bridge at the bay regions of hexa-peri-hexabenzocoronene. These trichalcogenasupersumanenes are synthesized quickly in three steps using an Aldol cyclotrimerization, a Scholl oxidative cyclization, and a Stille type reaction. X-ray crystallography analysis reveals that they encompass bowl diameters of 11.06 Å and 11.35 Å and bowl depths of 2.29 Å and 2.16 Å for the trithiasupersumanene and triselenosupersumanene, respectively. Furthermore, trithiasupersumanene derivative with methyl chains can form host-guest complexes with C60 or C70, which are driven by concave-convex Ï€â€‰â‹Żâ€‰Ï€ interactions and multiple C–Hâ€‰â‹Żâ€‰Ï€ interactions between bowl and fullerenes

    Carbon Dots Embedded in Cellulose Film: Programmable, Performance-Tunable, and Large-Scale Subtle Fluorescent Patterning by in Situ Laser Writing

    No full text
    Fluorescent patterns with multiple functions enable high-security anti-counterfeiting labels. Complex material synthesis and patterning processes limit the application of multifunctional fluorescent patterns, so the technology of in situ fluorescent patterning with tunable multimodal capabilities is becoming more necessary. In this work, an in situ fluorescent patterning technology was developed using laser direct writing on solid cellulose film at ambient conditions without masks. The fluorescent intensity and surface microstructure of the patterns could be adjusted by programmable varying of the laser parameters simultaneously. During laser direct writing, carbon dots are generated in situ in a cellulose ester polymer matrix, which significantly simplifies the fluorescent patterning process and reduces the manufacturing cost. Interestingly, the tunable fluorescent intensity empowers the fabrication of visual stereoscopic fluorescent patterns with excitation dependence, further improving its anti-counterfeiting performance. The obtained fluorescent patterns still show ultrahigh optical properties after being immersed in an acid/base solution (pH 5-12) over one month. In addition, the anti-UV performance of the obtained laser-patterned film with transmittance around 90% is comparable to that of commercial UV-resistant films. This work provided an advanced and feasible approach to fabricating programmable, performance-tunable, subtle fluorescent patterns in large-scale for industrial application.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Bio-Electronic

    Concise and Efficient Fluorescent Probe via an Intromolecular Charge Transfer for the Chemical Warfare Agent Mimic Diethylchlorophosphate Vapor Detection

    No full text
    Sarin, used as chemical warfare agents (CWAs) for terrorist attacks, can induce a number of virulent effects. Therefore, countermeasures which could realize robust and convenient detection of sarin are in exigent need. A concise charge-transfer colorimetric and fluorescent probe (4-(6-(<i>tert</i>-butyl)­pyridine-2-yl)-<i>N</i>,<i>N</i>-diphenylaniline, TBPY-TPA) that could be capable of real-time and on-site monitoring of DCP vapor was reported in this contribution. Upon contact with DCP, the emission band red-shifted from 410 to 522 nm upon exposure to DCP vapor. And the quenching rate of TBPY-TPA reached up to 98% within 25 s. Chemical substances such as acetic acid (HAc), dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PAMP), and triethyl phosphate (TEP) do not interfere with the detection. A detection limit for DCP down to 2.6 ppb level is remarkably achieved which is below the Immediately Dangerous to Life or Health concentration. NMR data suggested that a transformation of the pyridine group into pyridinium salt via a cascade reaction is responsible for the sensing process which induced the dramatic fluorescent red shift. All of these data suggest TBPY-TPA is a promising fluorescent sensor for a rapid, simple, and low-cost method for DCP detection, which could be easy to prepare as a portable chemosensor kit for its practical application in real-time and on-site monitoring

    Aggregation State Reactivity Activation of Intramolecular Charge Transfer Type Fluorescent Probe and Application in Trace Vapor Detection of Sarin Mimics

    No full text
    The reactivity of most Intramolecular Charge Transfer (ICT) based probes in the film state is much poorer than that in solution, due to the serious solid state aggregation of the large polarity molecules. In this contribution, an efficient method for activating the aggregation state reactivity of ICT based probes has been developed. Multiple hydrogen bonds formed by the oxime group, together with the phenol anion, could activate the aggregation state reactivity of the oxime group. By enhancing frontier orbital energy level, and constructing porous film structure, the probe becomes more compatible for highly efficient vapor phase reaction. In application, the TOP-I film can distinguish different organic phosphates with significant fluorescence change. The detection limit for diethyl chloro phosphate (DCP) is 1.2 ppb, lower than the Immediately Dangerous to Life and Health (IDLH) level of Sarin. Such a reactivity activating strategy can be extended to detect other harmful vapors by inducing suitable functional groups as the acceptor of the ICT system. Furthermore, with the increasing importance of green chemistry, the method may be beneficial for applications in solvent-free reactions
    corecore