7,653 research outputs found

    Increment entropy as a measure of complexity for time series

    Full text link
    Entropy has been a common index to quantify the complexity of time series in a variety of fields. Here, we introduce increment entropy to measure the complexity of time series in which each increment is mapped into a word of two letters, one letter corresponding to direction and the other corresponding to magnitude. The Shannon entropy of the words is termed as increment entropy (IncrEn). Simulations on synthetic data and tests on epileptic EEG signals have demonstrated its ability of detecting the abrupt change, regardless of energetic (e.g. spikes or bursts) or structural changes. The computation of IncrEn does not make any assumption on time series and it can be applicable to arbitrary real-world data.Comment: 12pages,7figure,2 table

    Efficiently Disassemble-and-Pack for Mechanism

    Full text link
    In this paper, we present a disassemble-and-pack approach for a mechanism to seek a box which contains total mechanical parts with high space utilization. Its key feature is that mechanism contains not only geometric shapes but also internal motion structures which can be calculated to adjust geometric shapes of the mechanical parts. Our system consists of two steps: disassemble mechanical object into a group set and pack them within a box efficiently. The first step is to create a hierarchy of possible group set of parts which is generated by disconnecting the selected joints and adjust motion structures of parts in groups. The aim of this step is seeking total minimum volume of each group. The second step is to exploit the hierarchy based on breadth-first-search to obtain a group set. Every group in the set is inserted into specified box from maximum volume to minimum based on our packing strategy. Until an approximated result with satisfied efficiency is accepted, our approach finish exploiting the hierarchy.Comment: 2 pages, 2 figure

    Numerical simulation of pressure pulse decay experiment on crushed low permeability rocks considering Klinkenberg effect and gas absorption/desorption

    Get PDF
    Pressure pulse decay method is widely used for permeability tests for low permeability rock plug samples. This method can be used for crushed grain samples by removing the downstream chamber in standard pulse decay tests. Processes in pulse decay tests for low permeability crushed shale are investigated using numerical simulation. Both the Klinkenberg slip effect for gas flows in low permeability rock and the gas absorption/desorption in the porous matrix are considered. The complete mathematical model is set up to include the two effects. Deviation of the numerical pulse decay curve from the analytical one with an assumption that the pressure keeps a constant in the porous sample is investigated. The relative importance of gas absorption/desorption and gas compressibility is also investigated quantitatively. According to the present investigation, gas compressibility and adsorption both make negative contributions to the permeating process. A potential two-curve method is proposed to decide absolute permeability and the Klinkenberg coefficient when these two parameters cannot be distinguished using one pulse decay curve during the inverse fitting procedure. These two parameters can be determined at the same time only if the experiment is conducted under big initial pressure difference and the Klinkenberg coefficient has at least the same order of magnitude as the pressure

    Analysis and real-time prediction of the full-scale thrust for floating wind turbine based on artificial intelligence

    Get PDF
    In this paper, numerous aero-hydro-servo-elastic coupled simulations are carried out in time-domain to observe the performance of the real-time thrust acting on the rotor of the OC3-Hywind offshore floating wind turbine. And the studying focuses on investigating the correlation between inputs (surge motion, pitch motion, wind conditions, etc.) and the targeted output (rotor thrust) in the time domain. Besides, artificial intelligence (AI) techniques are used to estimate a prediction model of real-time thrust based on the data from simulations. To predict the thrust, data for four comparative coupled environmental conditions are considered, by which the effect of turbulence and wave spectrum on the thrust force is also investigated. Moreover, a series of simulations of frequency-increasing regular wave conditions and speed-increasing wind conditions are carried out to observe their effect on the real-time rotor thrust. Additionally, the impact of the pitch and surge RAOs of the floating foundation and the wind velocity are quantitatively studied. It reveals that the high-frequency response of thrust is dominated by wave change, whereas low-frequency response is dominated by wind change. Besides, one simulation model of the thrust acting on the rotor is estimated regarding high-frequency and low-frequency response separately to account the dominating influence

    Effective solid-to-fluid heat transfer coefficient in EGS reservoirs

    Get PDF
    The present work developed a three-equation local thermal non-equilibrium model to predict the effective solid-to-fluid heat transfer coefficient in the enhanced geothermal system reservoirs based on the volume averaging method. Due to the high rock-to-fracture size ratio, the solid thermal resistance effect in the internal rocks cannot be neglected in the effective solid-to-fluid heat transfer coefficient. The present three-equation local thermal non-equilibrium model can consider the dynamic variation of the solid thermal resistance in transient heat transfer by introducing the penetration temperature difference. The model was validated by comparison with pore-scale numerical simulations and macro-scale LTNE model numerical simulations. The results show that the three-equation local thermal non-equilibrium model has a high accurac
    • …
    corecore