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ABSTRACT 
Pressure pulse decay method is widely used for 
permeability tests for low permeability rock plug 
samples. This method can be used for crushed grain 
samples by removing the downstream chamber in 
standard pulse decay tests. Processes in pulse decay tests 
for low permeability crushed shale are investigated using 
numerical simulation. Both the Klinkenberg slip effect 
for gas flows in low permeability rock and the gas 
absorption/desorption in the porous matrix are 
considered. The complete mathematical model is set up 
to include the two effects. Deviation of the numerical 
pulse decay curve from the analytical one with an 
assumption that the pressure keeps a constant in the 
porous sample is investigated. The relative importance of 
gas absorption/desorption and gas compressibility is also 
investigated quantitatively. According to the present 
investigation, gas compressibility and adsorption both 
make negative contributions to the permeating process. A 
potential two-curve method is proposed to decide 
absolute permeability and the Klinkenberg coefficient 
when these two parameters cannot be distinguished using 
one pulse decay curve during the inverse fitting 
procedure. These two parameters can be determined at 
the same time only if the experiment is conducted under 
big initial pressure difference and the Klinkenberg 
coefficient has at least the same order of magnitude as 
the pressure. 
 
INTRODUCTION 
Gas-bearing shale is a kind of porous media with ultra-
low permeability, whose information such as porosity 
and permeability are very important in shale gas 
production industry. The pore size for shale matrix 
ranges in 1 nm and 100 nm[12], which causes non-Darcy 
flows in natural gas exploiting processes and laboratory 
permeability tests [4,7]. When gas flowing through a 
porous medium with nano-scale pore size, the velocity 

slip at the gas-solid interface becomes significant, which 
result in the Klinkenberg effect for marco-scale porous 
medium flow[7, 10]. The Klinkenberg relation treats the 
effective permeability as a function of local gas pressure: 
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where k0 is the absolute permeability and bK is the 
Klinkenberg slip constant. Florence has pointed out the 
inner relation between this formula and rarefied gas 
flows in nano-scale channels [7]. The two parameters k0 
and bK are usually decided by experiments. 
Another effect must be considered when modelling flows 
in shale is adsorption/desorption [2, 3]. Kerogen is an 
important component of gas-shale, which provides a very 
high internal surface area to reserve natural gas. The 
amount of gas adsorbed at the kerogen surface changes 
dynamically as the pore pressure changes. A Langmuir 
type isothermal equation is usually used to describe gas 
adsorption in shale: 
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where qa (std m3/kg) is the standard volume of gas 
adsorbed per solid mass, qL (std m3/kg) is the Langmuir 
gas volume, pL is the Langmuir pressure (Pa).  
Pressure pulse decay method is s standard technique to 
measure the permeability for porous media with ultra-
low permeability, typically in the range of 10-9 D [1, 3]. 
The conventional steady state method which measures 
the pressure drop and the flow rate when a test fluid flow 
through a porous medium sample does not work for 
ultra-low porous media because the flow rate are too low 
to measure accurately. In a pressure pulse decay 
experiment, only pressure (or pressure difference) decay 
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curve is to be recorded while the test time is relatively 
short [9, 14]. The standard sample in rock analysis is 
cylinder shape plug sample. Gas plug samples can be 
viewed as one-dimensional, i.e. along the axis direction 
in pressure pulse decay experiments. Substitute samples 
are crushed quasi-spherical samples, which are easier to 
acquired and the corresponding apparatus is also simpler 
than that for plug samples [5, 13]. 
The apparatus for crushed porous samples are shown in 
figure 1. The system contains two vessels, a buffer vessel 
and an experimental vessel which contains spherical 
samples (all with radius r0). First, let the gas fill the 
buffer vessel and maintain a relatively high pressure. 
Second, let the high pressure gas crushed into the 
experimental vessel which is at pressure p1i and then turn 
off the valve (a preheat process may be needed if the 
Joule-Thompson effect is significant). At this instant, the 
buffer vessel and the void volume V0 of the experimental 
vessel both have pressure p0i when equilibrium is 
reached. Then the gas in the volume V0 begins to 
permeate in the low permeability samples along the 
radius direction slowly until the pressure in the void 
volume and the pore space becomes equilibrium again. 
The pressure difference gauge records the process of 
pressure decay in the experimental vessel and an analysis 
on the curve will provide information about the porous 
medium. 

 
Figure 1 Apparatus for pressure pulse decay experiment 
for crushed spherical porous media samples with ultra-

low permeability.  
 
In the present article, we will set up the complete 
mathematical description of the pressure pulse decay 
experiment introduced above. We will compare the 
approximated analytical solution and the accurate 
numerical solution to show the importance of the gas 
compressibility and adsorption. Finally, an investigation 
on the inverse problem, i.e. the experiment data 
processing method, will be shown. We provide a 
potential solution to decide both the absolute 
permeability k0 and the Klinkenberg slip constant bK 
using two pressure decay curves. 
NOMENCLATURE 
A = the fitting constant for data processing 

bK = the Klinkenberg coefficient 
cg = isothermal compressible coefficient 
e = error to the estimated parameter k/𝜀 
F = adsorption-modified geometry constant 
f = geometry constant for the apparatus 
k = effective permeability 
k0 = absolute permeability 
Mg = gas mass (kg) per kmol 
p = pressure 
p0i = initial pressure in void volume V0 
p1i = initial pressure 
pf = steady state pressure 
pL = the Langmuir pressure 
q = adsorbate density per unit sample 
volume 
qa = the standard volume of gas adsorbed 
per solid mass 
qL = the Langmuir gas volume 
R = 8314kJ/(kmol∙K)/Mg 
r = space coordinate 
r0 = sample radius 
Ss = total sample surface area 
T = temperature 
t = time coordinate 
t0 = characteristic time 
u = the Darcy velocity 
V0 = experiment vessel void volume 
Vs = total sample volume 
Vstd = ideal gas volume per kmol in standard 
state 
z = gas compressibility factor 
x = εa/ε 
 
Greek Symbols 
ε = porosity 
εa = effective porosity caused by adsorption 
𝜇 = gas viscosity 
ρ = gas density 
ρs = solid density 
φ = root of the characteristic equation 
 
Subscripts 
0 = value in the reference state for gas 
properties  
adsor = adsorption  
comp = compressibility  
ref = reference  
~ = non-dimensional coordinate  
 
1 Governing equations for pressure pulse 
decay experiments with spherical samples 
Since the gas used in the pressure pulse decay permeates 
in all the spherical samples along the radius direction, the 
governing equation is one-dimensional in space. 
Considering the adsorption effect, the continuity 
equation is: 
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where ρ is gas density, q is adsorbate density per unit 
sample volume, ε is porous medium porosity, u is Darcy 
velocity. Apply the Darcy equation, the Langmuir 
isothermal and the equation of state: 
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where µ is gas viscosity, cg is isothermal compressible 
coefficient. Then (3) can be converted to a parabolic 
equation of pressure [2, 3]: 
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where εa is a pressure dependent effective porosity 
caused by adsorption: 
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As the gas permeate into the samples, the gas mass in the 
void volume of the experimental vessel decreases. Thus 
the boundary condition at the surfaces of spheres is: 
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Another two boundary conditions are the symmetry 
condition at the sphere center and a step function as 
initial condition: 
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The solution of equation (7) subject to boundary 
conditions (9), (10) and (11) will provide the pressure 
data of the samples and the pressure p0 at the sample 
surfaces can be measured by sensor. A fitting to curve 
p0(t) with the permeability as parameter provides a 
method to determine permeability related information, 
for example, k0 and bK. 
Now set the state of which the pressure is p0i and the 
temperature is T as a reference state. The corresponding 
gas properties are denoted with subscript 0. A non-
dimensional time t0 can be defined as: 
 

2
0 0 0

0
0

gr c
t

k
εµ

=   (12) 

 
Neglecting the adsorption temporally, a steady state 
pressure can be reached when the test time is sufficiently 
long. This pressure, denoting as pf, can be calculated as: 
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is an apparatus related geometry constant. The pressure 
p0 decays from p0i to pf during the experiment (assuming 
no adsorption). Using t0 and r0 as non-dimensionalize 
parameter for time and space, assuming the gas is ideal 
furtherly (z=1, cg=1/p, µ=µ0), equation (7) becomes: 
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and the boundary condition (9) now reads: 
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Equation (15) involves three effects explicitly: 
compressibility, adsorption and the Klinkenberg slip. If 
we neglect the compressibility effect, i.e. assuming the 
pressure in the samples keeps around a constant (p0i) all 
the time, the non-linearity disappears and an analytical 
solution can be derived using the Laplace transformation 
method [8]. Since the pressure in the samples ranges in p1i 
and p0i, the analytical solution is reasonable only if the 
relative pressure difference (p0i−p1i)/p0i is small. 
The approximated analytical solution of equation (15) 
subjected to corresponding boundary conditions are: 
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where φn is the nth root for characteristic equation: 
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Solution (17) can be truncated to reserve only the first 
term in the summation when the non-dimensional time is 
sufficiently large. Figure 2 shows that when the non-
dimensional time is larger than 0.2, the first root φ1 
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dominates the decay. This behavior provides a fast 
experiment data processing method, which is called 
“late-time technique” in the literature [3]. This method is 
only reasonable if the gas compressibility can be 
neglected.  
 

 
Figure 2 Analytical solutions calculated using the first 
100 roots or the first root of the characteristic equation, 
where x=0, bK=0, f=1, p0i=105Pa, p1i=8×104Pa 

 
2 Impacts of compressibility and adsorption  
In cases where the pressure drop in the samples is so 
large that the gas compressibility must be taken into 
account, equation (15) has no analytical solution. The 
coefficient (1+x)-1contributed by the adsorption effect 
also varies as the pressure distribution changes in such 
cases. However, the quasi-linear equation (15) can be 
solved numerically using the finite difference method. 
Figure 3 shows numerical results with several modes. 
The gas used in the simulation is nitrogen. Parameters 
involved in the adsorption effect are pL=7.5×106Pa, 
qL=0.01m3/kg, ρs=2500kg/m3, Vstd=22.414std m3/kmol. 
The transport equation (15) can be written as: 
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Since p0i is set as the reference state in the non-
dimensionalize procedure, which is the highest pressure 
in the transport process, the non-dimensional transport 
coefficient p/p0i is always less than 1 when bK is absent. 
Thus the compressibility always slows down the 
transport process, as that is shown in figure 3. The 
contribution of adsorption to the transport coefficient is 
also negative, so the evaluation towards the equilibrium 
state becomes slower when adsorption is considered. 
Adsorption also influences the final steady state pressure 
since this effect contributes an effective porosity to the 
porous medium. 
Further investigations on compressibility and adsorption 
respectively are shown in figure 4 and figure 5. If the 
late-time technique, i.e. the analytical solution, is still 
used to process an experiment pressure decay curve 
where the compressibility must be considered, an error to 
the parameter k0 to be determined will occur. The  

 

 
Figure 3 Numerical solutions with or without adsorption 
and compressibility, where bK=0, f=1, p0i=105Pa, 
p1i=5×104Pa 
 
dimensional form exponent in the analytical solution (the 
first term) gives: 
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where A(s-1) is a fitting parameter (assuming an exact 
value here). When adsorption is absent, the relative 
deviation of the porous medium transport parameter k/ε 
is: 
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At

e
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Figure 4 shows a contour of ecomp as a function of 
geometry parameter f and the relative pressure difference 
(p0i−p1i)/p0i. As discussed above, ignoring the 
compressibility will underestimate the transport 
coefficient. The error caused by ignoring compressibility 
increases as the non-dimensional pressure difference 
increases. The geometry parameter f also influences this 
error because the root φ1 is a function of f. 

 
Figure 4 Error of the porous medium transport 
coefficient k/ε caused by ignoring compressibility 
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Now we investigate on the adsorption effect if the gas 
can be viewed as incompressible during the experiment. 
The model (21) is accurate in such case, the adsorption 
affects the characteristic root φ1 only. The error of the 
transport coefficient k/(ε+εa) is: 
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2
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Fe
f

φ
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Figure 5 shows a contour of eadsor as a function of 
geometry parameter f and the parameter x defined in 
(19). As x increases (the adsorption enhances), the error 
caused by ignoring adsorption increases. The geometry 
parameter f also influences the error. 

 
Figure 5 Error of the porous medium transport 
coefficient k/(ε+εa) caused by ignoring adsorption 
 
2 Determine the absolute permeability and 
the Klinkenberg coefficient by solving the 
inverse  problem 
The impact of the Klinkenberg effect to the pressure 
decay curve p0(t) is relatively clear. The positive constant 
bK will enhance the term (p+bK)/p0i and hence the 
effective permeability. Noticing that the absolute 
permeability k0 is involved in the non-dimensional time, 
we conclude that in the following two cases k0 and bK 
cannot be distinguished by applying the inverse problem 
fitting on pressure decay curves: 
1) Incompressible cases. If the pressure in the sample 

remains closely to p0i then the term (p+bK)/p0i is also 
nearly a constant. Only the combination (p+bK)k0/p0i 
(which is a constant) can be got in the inverse 
problem. 

2) Cases where bK≪p0i. In such cases it is hard to 
capture bK numerically since its contribution to the 
pressure decay curve is covered up by the absolute 
permeability. 

The inverse problem is solved as the following steps. 
First evaluate a pressure decay curve using k0,ref and bK,ref, 
which are fitting parameters. Second choose M discrete 
data points as sample and define an optimization 
function: 
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where p0,fit,n is the nth data point of the curve calculated 
using predicting parameters k0 and bK, p0,ref,n is the nth 
data point of the sample set. Finally, minimize the 
function R subjected to positive k0 and bK. The algorithm 
using here is the Sequential Least SQuares Programming 
(SLSQP) Constrained minimization method [11].  
Figure 6 and figure 7 show fitting result for cases 
k0,ref=1×10-18m2 , bK,ref=5×104Pa and k0,ref=1×10-18m2 , 
bK,ref=1×105Pa respectively. Other related parameters are 
p0i=1×105Pa, f=1, x=0. The initial values (shown as 
hollow squares) for the optimization procedures are 
randomly selected in the range an order of magnitude 
more or less than the reference parameters. Two sample 
data are evaluated using different initial pressure p1i for 
each case. 

 
Figure 6 Inverse fitting results for case bK,ref=5×104Pa 
 

 
Figure 7 Inverse fitting results for case bK,ref=1×105Pa 
 
For each case the target value of fitting is (1,1) in figure 
6 and figure 7. Fitting results with different initial 
pressure p1i and hence different pressure difference 
(p0i−p1i)/p0i give similar curves. Parameters (k0/ k0,ref, bK/ 
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bK,ref) on these curves can all make calculated pressure 
decay curves and the sample data match. However, 
points satisfy both decay curves with different pressure 
difference concentrated near the point (1,1). When bK is 
comparable to p0i in order of magnitude, an intersection 
zone of the fitting result curves gradually forms, which 
also covers the desired point (1,1). This observation 
verifies the prior analysis in this section that we can hope 
to distinguish k0 and bK only if bK is comparable to p0i 
and compressibility is considered. Furthermore, two sets 
of sample data, i.e. two experiment pressure decay 
curves (with different initial pressure difference) are 
required at least. 
A substitute way to calculate k0 and bK is to calculate the 
effective permeability at various pressure and then fit the 
data using the Klinkenberg relation. This method is 
adopted in the conventional steady state permeability 
test, which also works here. More experiment pressure 
decay curves are needed to get accurate fitting results. 
 
CONCLUSIONS 
A complete mathematical model for the pressure pulse 
decay experiment for crushed shale matrix samples with 
ultra-low permeability is built in the present article. For 
shale matrix, both the Klinkenberg effect and 
adsorption/desorption must be taken into account. After 
the non-dimensionalize procedure, we find that 
compressibility, the Klinkenberg effect and adsorption all 
contributes to the effective permeability. The 
Klinkenberg effect makes a positive contribution while 
the other two effects make negative contributions. Key 
criterions on whether these effects are important are 
(p0i−p1i)/p0i for compressibility, x for adsorption and 
bK/p0i for the Klinkenberg effect. The geometry non-
dimensional factor f also influences these effects. 
The investigation on the inverse fitting procedure for k0 
and bK shows these two parameters cannot be 
distinguished using only one set of sample data. For 
cases where incompressibility is assumed or bK is too 
small, the effort to distinguish them will also fail. A 
practice shows that we can hope to determine these two 
parameters using two sets of sample data produced by 
large initial pressure difference experiment if the 
parameter bK is comparable to p0i. 
 
ACKNOWLEDGEMENT 
The authors would like to acknowledge support from the 
National Natural Science Foundation of China(No. 
51376104) and the National Science Fund for Creative 
Research Groups of China(No. 51321002) 
 
REFERENCES 
[1] American Petroleum Institute. Recommended 
Practices for Core Analysis, RP 40, 2th edition [R]. 
Washington: API, 1998: 6(37)-6(39) 

[2] Civan F, Rai CS, Sondergeld CH (2011) Shale-gas 
permeability and diffusivity inferred by improved 
formulation of relevant retention and transport 
mechanisms. Transport in Porous Media, 86(3): 925-
944. 
[3] Cui X, Bustin AMM, Bustin RM (2009) 
Measurements of gas permeability and diffusivity of 
tight reservoir rocks: different approaches and their 
applications. Geofluids, 9(3): 208-223. 
[4] Darabi H, Ettehad A, Javadpour F, et al (2012) Gas 
flow in ultra-tight shale strata. Journal of Fluid 
Mechanics, 710: 641-658. 
[5] Egermann P, Lenormand R, Longeron D, Zarcone C 
(2005) A fast and direct method of permeability 
measurements on drill cuttings. Society of Petroleum 
Engineers Reservoir Evaluation and Engineering, 4, 
269–75. 
[6] Florence, Francois Andre, et al Improved 
permeability prediction relations for low permeability 
sands. Rocky Mountain Oil & Gas Technology 
Symposium. Society of Petroleum Engineers, 2007. 
[7] Freeman CM, Moridis GJ, Blasingame TA (2011) A 
numerical study of microscale flow behavior in tight gas 
and shale gas reservoir systems. Transport in porous 
media, 90(1): 253-268. 
[8] Hsieh PA, Tracy JV, Neuzil CE, Bredehoeft JD, 
Silliman SE (1981) A transient laboratory method for 
determining the hydraulic properties of ‘tight’ rocks: I. 
Theory. International Journal of Rock Mechanics and 
Mining Sciences, 18, 245–52.  
[9] Jones SC (1997) A technique for faster pulse-decay 
permeability measurements in tight rocks. SPE formation 
evaluation, 12(01): 19-26. 
[10] Klinkenberg LJ (1941) The permeability of porous 
media to liquids and gases. Drilling and production 
practice. 
[11] Kraft, D (1998) A software package for sequential 
quadratic programming. Tech. Rep. DFVLR-FB 88-28, 
DLR German Aerospace Center – Institute for Flight 
Mechanics, Koln, Germany. 
[12] Loucks RG, et al (2009) Morphology, genesis, and 
distribution of nanometer-scale pores in siliceous 
mudstones of the Mississippian Barnett Shale. Journal of 
Sedimentary Research, 79(12): 848-861. 
[13] Luffel DL, Hopkins CW, Schettler Jr PD. Matrix 
permeability measurement of gas productive shales. SPE 
Annual Technical Conference and Exhibition. Society of 
Petroleum Engineers, 1993. 
[14] Yamada SE, Jones AH (1980) A review of a pulse 
technique for permeability measurements. Society of 
Petroleum Engineers Journal, 20(05): 357-358. 
 

 


	Engineering Conferences International
	ECI Digital Archives
	Summer 6-24-2014

	Numerical simulation of pressure pulse decay experiment on crushed low permeability rocks considering Klinkenberg effect and gas absorption/desorption
	Bo Zhou
	Rui-Na Xu
	Pei-Xue Jiang
	Recommended Citation


	Proceedings of the 3rd International Conference on Porous Media and its Applications in Science and Engineering

