1,322 research outputs found

    A Mutual Attraction Model for Both Assortative and Disassortative Weighted Networks

    Full text link
    In most networks, the connection between a pair of nodes is the result of their mutual affinity and attachment. In this letter, we will propose a Mutual Attraction Model to characterize weighted evolving networks. By introducing the initial attractiveness AA and the general mechanism of mutual attraction (controlled by parameter mm), the model can naturally reproduce scale-free distributions of degree, weight and strength, as found in many real systems. Simulation results are in consistent with theoretical predictions. Interestingly, we also obtain nontrivial clustering coefficient C and tunable degree assortativity r, depending on mm and A. Our weighted model appears as the first one that unifies the characterization of both assortative and disassortative weighted networks.Comment: 4 pages, 3 figure

    Shear viscosity of neutron-rich nucleonic matter near its liquid-gas phase transition

    Get PDF
    Within a relaxation time approach using free nucleon-nucleon cross sections modified by the in-medium nucleon masses that are determined from an isospin- and momentum-dependent effective nucleon-nucleon interaction, we investigate the specific shear viscosity (η/s\eta/s) of neutron-rich nucleonic matter near its liquid-gas phase transition. It is found that as the nucleonic matter is heated at fixed pressure or compressed at fixed temperature, its specific shear viscosity shows a valley shape in the temperature or density dependence, with the minimum located at the boundary of the phase transition. Moreover, the value of η/s\eta/s drops suddenly at the first-order liquid-gas phase transition temperature, reaching as low as 454\sim5 times the KSS bound of /4π\hbar/4\pi. However, it varies smoothly for the second-order liquid-gas phase transition. Effects of the isospin degree of freedom and the nuclear symmetry energy on the value of η/s\eta/s are also discussed.Comment: 6 pages, 5 figure

    Spinon Fermi surface in a cluster Mott insulator model on a triangular lattice and possible application to 1T-TaS2_2

    Get PDF
    1T-TaS2_2 is a cluster Mott insulator on the triangular lattice with 13 Ta atoms forming a star of David cluster as the unit cell. We derive a two dimensional XXZ spin-1/2 model with four-spin ring exchange term to describe the effective low energy physics of a monolayer 1T-TaS2_2, where the effective spin-1/2 degrees of freedom arises from the Kramers degenerate spin-orbital states on each star of David. A large scale density matrix renormalization group simulation is further performed on this effective model and we find a gapless spin liquid phase with spinon Fermi surface at moderate to large strength region of four-spin ring exchange term. All peaks in the static spin structure factor are found to be located on the "2kF2k_F" surface of half-filled spinon on the triangular lattice. Experiments to detect the spinon Fermi surface phase in 1T-TaS2_2 are discussed.Comment: 5+11 pages, 4+13 figure
    corecore